Multi-dimensional ρ-almost periodic type functions and applications

被引:5
作者
Feckan, M. [1 ]
Khalladi, M. T. [2 ]
Kostic, M. [3 ]
Rahmani, A. [4 ]
机构
[1] Comenius Univ, Fac Math Phys & Informat, Dept Math Anal & Numer Math, Bratislava, Slovakia
[2] Univ Adrar, Dept Math & Comp Sci, Adrar, Algeria
[3] Univ Novi Sad, Fac Tech Sci, Novi Sad, Serbia
[4] Univ Adrar, Lab Math Modeling & Applicat LaMMA, Adrar, Algeria
关键词
Multi-dimensional rho-almost periodic functions; multi-dimensional; (omega; rho)-almost periodic functions; (omega(j); rho(j))(j is an element of Nn)-periodic functions; abstract Volterra integro-differential equations; DIFFERENTIAL-EQUATIONS; BLOW-UP; SPACE; UNIQUENESS; EXISTENCE; OPERATOR; SYSTEM;
D O I
10.1080/00036811.2022.2103678
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we analyze various classes of multi-dimensional rho-almost periodic type functions F : I x X -> Y and multi-dimensional (omega, rho)-almost periodic type functions F : I x X -> Y, where n is an element of N, (empty set) not equal I subset of R-n, X and Y are complex Banach spaces and rho is a binary relation on Y. The proposed notion is new even in the one-dimensional setting, for the functions of the form F : I -> Y. The main structural properties and characterizations for the introduced classes of functions are presented. We provide certain applications of our theoretical results to the abstract Volterra integro-differential equations, as well.
引用
收藏
页码:142 / 168
页数:27
相关论文
共 60 条
[1]  
Agaoglou M, 2020, INT J DYN SYST DIFFE, V10, P149
[2]   Forced symmetric oscillations of evolution equations [J].
Aizicovici, S ;
Feckan, M .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2006, 64 (07) :1621-1640
[3]   (ω,c)-asymptotically periodic functions, first-order Cauchy problem, and Lasota-Wazewska model with unbounded oscillating production of red cells [J].
Alvarez, Edgardo ;
Castillo, Samuel ;
Pinto, Manuel .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2020, 43 (01) :305-319
[4]  
Alvarez E, 2019, BOUND VALUE PROBL, DOI 10.1186/s13661-019-1217-x
[5]   (ω, &ITc&IT)-periodic functions and mild solutions to abstract fractional integro-differential equations [J].
Alvarez, Edgardo ;
Gomez, Adrian ;
Pinto, Manuel .
ELECTRONIC JOURNAL OF QUALITATIVE THEORY OF DIFFERENTIAL EQUATIONS, 2018, (16) :1-8
[6]  
Arendt W., 2001, VECTOR VALUED LAPLAC, DOI DOI 10.1007/978-3-0348-5075-9
[7]   Heteroclinic period blow-up in certain symmetric ordinary differential equations [J].
Battelli, F ;
Feckan, M .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 1996, 47 (03) :385-399
[8]   Solution of a countable system of quasilinear partial differential equations multiperiodic in a part of variables [J].
Berzhanov, A. B. ;
Kurmangaliev, E. K. .
UKRAINIAN MATHEMATICAL JOURNAL, 2009, 61 (02) :336-345
[9]  
Berzhanov A. B., 2001, IZV MINIST OBRAZ NAU, V3, P16
[10]  
Besicovitch A., 1954, ALMOST PERIODIC FUNC