Laser Shock Processing of 6061-T6 Al alloy with 1064 nm and 532 nm wavelengths

被引:48
作者
Gomez-Rosas, G. [1 ]
Rubio-Gonzalez, C. [2 ]
Ocana, J. L. [3 ]
Molpeceres, C. [3 ]
Porro, J. A. [3 ]
Morales, M. [3 ]
Casillas, F. J. [4 ]
机构
[1] Univ Guadalajara, CUCEI, Dept Fis, Ctr Univ Ciencias Exactas & Ingn, Guadalajara 44430, Jalisco, Mexico
[2] Ctr Ingn & Desarrollo Ind, Queretaro 76130, Qro, Mexico
[3] Univ Politecn Madrid, ETSII, Dept Fis Aplicada Ingn Ind, E-28040 Madrid, Spain
[4] Univ Guadalajara, Dept Ciencias Exactas & Tecnol, Lagos De Moreno 47460, Jalisco, Mexico
关键词
Laser Shock Processing; Compressive residual stress; RESIDUAL-STRESSES; WAVES; PLASMA; FILMS;
D O I
10.1016/j.apsusc.2010.03.043
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Laser Shock Processing (LSP) has been proposed as a competitive alternative technology to classical treatments for improving fatigue and wear resistance of metals. We present a configuration and results in the LSP concept for metal surface treatments in underwater laser irradiation at 532 nm and 1064 nm. The purpose of the work is to compare the effect of both wavelengths on the same material. A convergent lens is used to deliver 1.2 J/pulse (1064 nm) and 0.9 J/pulse (532 nm) in a 8 ns laser FWHM pulse produced by 10 Hz Q-switched Nd:YAG laser with spots of a 1.5 mm in diameter moving forward along the work piece. A LSP configuration with experimental results using a pulse density of 2500 pulses/cm(2) and 5000 pulses/cm(2) in 6061-T6 aluminum samples are presented. High level compressive residual stresses are produced using both wavelengths. It has been shown that surface residual stress level is comparable to that achieved by conventional shot peening, but with greater depths. This method can be applied to surface treatment of final metal products. (C) 2010 Elsevier B. V. All rights reserved.
引用
收藏
页码:5828 / 5831
页数:4
相关论文
共 20 条
[1]  
[Anonymous], 2002, ANN BOOK ASTM STAND
[2]  
[Anonymous], 1994, Dynamic Behavior of Materials, P66
[3]   Shock profile induced by short laser pulses [J].
Couturier, S ;
deResseguier, T ;
Hallouin, M ;
Romain, JP ;
Bauer, F .
JOURNAL OF APPLIED PHYSICS, 1996, 79 (12) :9338-9342
[4]   PHYSICAL STUDY OF LASER-PRODUCED PLASMA IN CONFINED GEOMETRY [J].
FABBRO, R ;
FOURNIER, J ;
BALLARD, P ;
DEVAUX, D ;
VIRMONT, J .
JOURNAL OF APPLIED PHYSICS, 1990, 68 (02) :775-784
[5]   QUANTITATIVE ASSESSMENT OF LASER-INDUCED STRESS WAVES GENERATED AT CONFINED SURFACES [J].
FAIRAND, BP ;
CLAUER, AH ;
JUNG, RG ;
WILCOX, BA .
APPLIED PHYSICS LETTERS, 1974, 25 (08) :431-433
[6]   High level compressive residual stresses produced in aluminum alloys by laser shock processing [J].
Gomez-Rosas, G ;
Rubio-Gonzalez, C ;
Ocaña, JL ;
Molpeceres, C ;
Porro, JA ;
Chi-Moreno, W ;
Morales, M .
APPLIED SURFACE SCIENCE, 2005, 252 (04) :883-887
[7]   OPTICAL-CONSTANTS OF WATER IN 200-NM TO 200-MUM WAVELENGTH REGION [J].
HALE, GM ;
QUERRY, MR .
APPLIED OPTICS, 1973, 12 (03) :555-563
[8]   LASER-TARGET INTERACTIONS [J].
HOFFMAN, CG .
JOURNAL OF APPLIED PHYSICS, 1974, 45 (05) :2125-2128
[9]   Laser-generated shock waves in thin films of energetic materials [J].
Ling, P ;
Wight, CA .
JOURNAL OF APPLIED PHYSICS, 1995, 78 (12) :7022-7025
[10]  
MOLPECERES C, 2003, OPTICA PURA APLICADA, V36, P51