Searching for microRNA Prostate Cancer Target Genes

被引:0
|
作者
Masulli, Francesco [1 ]
Parini, Alessandro [1 ]
Rovetta, Stefano [1 ]
Russo, Giuseppe [1 ]
机构
[1] Univ Genoa, Dept Comp & Informat Sci, I-16146 Genoa, Italy
来源
IJCNN: 2009 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, VOLS 1- 6 | 2009年
关键词
BINDING-SITES; EXPRESSION; RNA; IDENTIFICATION; PREDICTION;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
MicroRNAs are a class of short, non-coding RNA regulating the expression of genes involved in several biological processes. This paper addresses the computational identification of target genes for microRNAs, in particular those involved in the development of prostate cancer. The available tools, in particular the miRanda program, need to be validated against biological evidence. We identify several refinement of the algorithm, and provide an optimization of the parameters involved, by means of a genetic algorithm, so as to maximize the adherence of results to biological evidence. The increased selectivity of the method may also be used to guide experimental validation in a more focused direction.
引用
收藏
页码:3171 / 3176
页数:6
相关论文
共 50 条
  • [31] Effects of microRNA-210 on the diagnosis and treatment of prostate cancer
    Qu, Yuejun
    Huang, Wenqiang
    MOLECULAR MEDICINE REPORTS, 2018, 18 (02) : 1740 - 1744
  • [32] Predicting the target genes of microRNA based on microarray data
    Cao, B.
    Ji, T.
    Zhou, B.
    Zou, J.
    Jiao, G. Q.
    GENETICS AND MOLECULAR RESEARCH, 2013, 12 (04): : 6059 - 6066
  • [33] Predicting MicroRNA Target Genes and Identifying Hub Genes in IIA Stage Colon Cancer Patients Using Bioinformatics Analysis
    Dong, Zhiyong
    Lin, Wei
    Kujawa, Stacy A.
    Wu, Shike
    Wang, Cunchuan
    BIOMED RESEARCH INTERNATIONAL, 2019, 2019
  • [34] MiR-93/miR-375: Diagnostic Potential, Aggressiveness Correlation and Common Target Genes in Prostate Cancer
    Ciszkowicz, Ewa
    Porzycki, Pawel
    Semik, Malgorzata
    Kaznowska, Ewa
    Tyrka, Miroslaw
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2020, 21 (16) : 1 - 19
  • [35] Computational prediction and experimental validation of evolutionarily conserved microRNA target genes in bilaterian animals
    Takane, Kahori
    Fujishima, Kosuke
    Watanabe, Yuka
    Sato, Asako
    Saito, Nobuto
    Tomita, Masaru
    Kanai, Akio
    BMC GENOMICS, 2010, 11
  • [36] Polymorphisms inside MicroRNAs and MicroRNA Target Sites Predict Clinical Outcomes in Prostate Cancer Patients Receiving Androgen-Deprivation Therapy
    Bao, Bo-Ying
    Pao, Jiunn-Bey
    Huang, Chun-Nung
    Pu, Yeong-Shiau
    Chang, Ta-Yuan
    Lan, Yu-Hsuan
    Lu, Te-Ling
    Lee, Hong-Zin
    Juang, Shin-Hun
    Chen, Lu-Min
    Hsieh, Chi-Jeng
    Huang, Shu-Pin
    CLINICAL CANCER RESEARCH, 2011, 17 (04) : 928 - 936
  • [37] Common features of microRNA target prediction tools
    Peterson, Sarah M.
    Thompson, Jeffrey A.
    Ufkin, Melanie L.
    Sathyanarayana, Pradeep
    Liaw, Lucy
    Congdon, Clare Bates
    FRONTIERS IN GENETICS, 2014, 5
  • [38] A structural view of microRNA-target recognition
    Leoni, Guido
    Tramontano, Anna
    NUCLEIC ACIDS RESEARCH, 2016, 44 (09)
  • [39] Inferring causative variants in microRNA target sites
    Thomas, Laurent F.
    Saito, Takaya
    Saetrom, Pal
    NUCLEIC ACIDS RESEARCH, 2011, 39 (16) : e109
  • [40] Ovarian cancer classification and prognosis assessment model based on prognostic target genes in key microRNA-target gene networks
    Chen, Xuelian
    Li, Yibing
    He, Junjian
    JOURNAL OF GENE MEDICINE, 2024, 26 (01)