On-Demand Generation of Entangled Photon Pairs in the Telecom C-Band with InAs Quantum Dots

被引:45
作者
Zeuner, Katharina D. [1 ]
Jons, Klaus D. [1 ]
Schweickert, Lucas [1 ]
Hedlund, Carl Reuterskiold [2 ]
Lobato, Carlos Nunez [2 ]
Lettner, Thomas [1 ]
Wang, Kai [1 ]
Gyger, Samuel [1 ]
Scholl, Eva [1 ]
Steinhauer, Stephan [1 ]
Hammar, Mattias [2 ]
Zwiller, Val [1 ]
机构
[1] Albanova Univ Ctr, Royal Inst Technol, Dept Appl Phys, S-10691 Stockholm, Sweden
[2] Royal Inst Technol, Dept Elect Engn, S-229 Kista, Sweden
基金
瑞典研究理事会; 欧洲研究理事会;
关键词
semiconductor quantum dots; telecom wavelengths; entangled photons; two-photon resonant excitation; single-photon source; quantum state tomography;
D O I
10.1021/acsphotonics.1c00504
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Entangled photons are an integral part in quantum optics experiments and a key resource in quantum imaging, quantum communication, and photonic quantum information processing. Making this resource available on-demand has been an ongoing scientific challenge with enormous progress in recent years. Of particular interest is the potential to transmit quantum information over long distances, making photons the only reliable flying qubit. Entangled photons at the telecom C-band could be directly launched into single-mode optical fibers, enabling worldwide quantum communication via existing telecommunication infrastructure. However, the on-demand generation of entangled photons at this desired wavelength window has been elusive. Here, we show a photon pair generation efficiency of 69.9 +/- 3.6% in the telecom C-band by an InAs/GaAs semiconductor quantum dot on a metamorphic buffer layer. Using a robust phonon-assisted two-photon excitation scheme we measure a maximum concurrence of 91.4 +/- 3.8% and a peak fidelity to the Phi(+) state of 95.2 +/- 1.1%, verifying on-demand generation of strongly entangled photon pairs and marking an important milestone for interfacing quantum light sources with our classical fiber networks.
引用
收藏
页码:2337 / 2344
页数:8
相关论文
共 49 条
  • [1] Long-distance free-space distribution of quantum entanglement
    Aspelmeyer, M
    Böhm, HR
    Gyatso, T
    Jennewein, T
    Kaltenbaek, R
    Lindenthal, M
    Molina-Terriza, G
    Poppe, A
    Resch, K
    Taraba, M
    Ursin, R
    Walther, P
    Zeilinger, A
    [J]. SCIENCE, 2003, 301 (5633) : 621 - 623
  • [2] Entanglement Swapping with Photons Generated on Demand by a Quantum Dot
    Basset, F. Basso
    Rota, M. B.
    Schimpf, C.
    Tedeschi, D.
    Zeuner, K. D.
    da Silva, S. F. Covre
    Reindl, M.
    Zwiller, V
    Jons, K. D.
    Rastelli, A.
    Trotta, R.
    [J]. PHYSICAL REVIEW LETTERS, 2019, 123 (16)
  • [3] Regulated and entangled photons from a single quantum dot
    Benson, O
    Santori, C
    Pelton, M
    Yamamoto, Y
    [J]. PHYSICAL REVIEW LETTERS, 2000, 84 (11) : 2513 - 2516
  • [4] Telecom-wavelength (1.5 μm) single-photon emission from InP-based quantum dots
    Benyoucef, M.
    Yacob, M.
    Reithmaier, J. P.
    Kettler, J.
    Michler, P.
    [J]. APPLIED PHYSICS LETTERS, 2013, 103 (16)
  • [5] Highly-efficient extraction of entangled photons from quantum dots using a broadband optical antenna
    Chen, Yan
    Zopf, Michael
    Keil, Robert
    Ding, Fei
    Schmidt, Oliver G.
    [J]. NATURE COMMUNICATIONS, 2018, 9
  • [6] Ultrabright source of entangled photon pairs
    Dousse, Adrien
    Suffczynski, Jan
    Beveratos, Alexios
    Krebs, Olivier
    Lemaitre, Aristide
    Sagnes, Isabelle
    Bloch, Jacqueline
    Voisin, Paul
    Senellart, Pascale
    [J]. NATURE, 2010, 466 (7303) : 217 - 220
  • [7] Efficient entanglement distribution over 200 kilometers
    Dynes, J. F.
    Takesue, H.
    Yuan, Z. L.
    Sharpe, A. W.
    Harada, K.
    Honjo, T.
    Kamada, H.
    Tadanaga, O.
    Nishida, Y.
    Asobe, M.
    Shields, A. J.
    [J]. OPTICS EXPRESS, 2009, 17 (14): : 11440 - 11449
  • [8] QUANTUM CRYPTOGRAPHY BASED ON BELL THEOREM
    EKERT, AK
    [J]. PHYSICAL REVIEW LETTERS, 1991, 67 (06) : 661 - 663
  • [9] Dephasing Free Photon Entanglement with a Quantum Dot
    Fognini, A.
    Ahmadi, A.
    Zeeshan, M.
    Fokkens, J. T.
    Gibson, S. J.
    Sherlekar, N.
    Daley, S. J.
    Dalacu, D.
    Poole, P. J.
    Jons, K. D.
    Zwiller, V.
    Reimer, M. E.
    [J]. ACS PHOTONICS, 2019, 6 (07): : 1656 - 1663
  • [10] Fokkens T., Optical quantum tomography code