Vertex and edge spread of zero forcing number, maximum nullity, and minimum rank of a graph

被引:59
作者
Edholm, Christina J. [2 ]
Hogben, Leslie [1 ,3 ]
My Huynh [4 ]
LaGrange, Joshua [1 ]
Row, Darren D. [1 ]
机构
[1] Iowa State Univ, Dept Math, Ames, IA 50011 USA
[2] Willamette Univ, Dept Math, Salem, OR 97301 USA
[3] Amer Inst Math, Palo Alto, CA 94306 USA
[4] Arizona State Univ, Dept Math, Tempe, AZ 85287 USA
基金
美国国家科学基金会;
关键词
Zero spread; Null spread; Rank spread; Zero forcing number; Maximum nullity; Minimum rank; Supertriangle; Grid graph; Triangular grid; King grid; SYMMETRIC-MATRICES; SETS;
D O I
10.1016/j.laa.2010.10.015
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The minimum rank of a simple graph G is defined to be the smallest possible rank over all symmetric real matrices whose ijth entry (for i not equal j) is nonzero whenever {i, j} is an edge in G and is zero otherwise; maximum nullity is taken over the same set of matrices. The zero forcing number is the minimum size of a zero forcing set of vertices and bounds the maximum nullity from above. The spread of a graph parameter at a vertex v or edge e of G is the difference between the value of the parameter on G and on G - v or G - e. Rank spread (at a vertex) was introduced in [4]. This paper introduces vertex spread of the zero forcing number and edge spreads for minimum rank/maximum nullity and zero forcing number. Properties of the spreads are established and used to determine values of the minimum rank/maximum nullity and zero forcing number for various types of grids with a vertex or edge deleted. (C) 2010 Elsevier Inc. All rights reserved.
引用
收藏
页码:4352 / 4372
页数:21
相关论文
共 33 条
[31]   On the maximum spectral radius of clique trees with a given zero forcing number [J].
Das, Joyentanuj .
COMPUTATIONAL & APPLIED MATHEMATICS, 2025, 44 (06)
[32]   A lower bound for minimum positive semidefinite rank by constructing an OS-vertex set for a given graph [J].
Lei, Li ;
Huang, Ting-Zhu .
INFORMATION-AN INTERNATIONAL INTERDISCIPLINARY JOURNAL, 2011, 14 (06) :1873-1878
[33]   On the diameter and zero forcing number of some graph classes in the Johnson, Grassmann and Hamming association scheme [J].
Abiad, Aida ;
Simoens, Robin ;
Zeijlemaker, Sjanne .
DISCRETE APPLIED MATHEMATICS, 2024, 348 :221-230