Vertex and edge spread of zero forcing number, maximum nullity, and minimum rank of a graph

被引:59
作者
Edholm, Christina J. [2 ]
Hogben, Leslie [1 ,3 ]
My Huynh [4 ]
LaGrange, Joshua [1 ]
Row, Darren D. [1 ]
机构
[1] Iowa State Univ, Dept Math, Ames, IA 50011 USA
[2] Willamette Univ, Dept Math, Salem, OR 97301 USA
[3] Amer Inst Math, Palo Alto, CA 94306 USA
[4] Arizona State Univ, Dept Math, Tempe, AZ 85287 USA
基金
美国国家科学基金会;
关键词
Zero spread; Null spread; Rank spread; Zero forcing number; Maximum nullity; Minimum rank; Supertriangle; Grid graph; Triangular grid; King grid; SYMMETRIC-MATRICES; SETS;
D O I
10.1016/j.laa.2010.10.015
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The minimum rank of a simple graph G is defined to be the smallest possible rank over all symmetric real matrices whose ijth entry (for i not equal j) is nonzero whenever {i, j} is an edge in G and is zero otherwise; maximum nullity is taken over the same set of matrices. The zero forcing number is the minimum size of a zero forcing set of vertices and bounds the maximum nullity from above. The spread of a graph parameter at a vertex v or edge e of G is the difference between the value of the parameter on G and on G - v or G - e. Rank spread (at a vertex) was introduced in [4]. This paper introduces vertex spread of the zero forcing number and edge spreads for minimum rank/maximum nullity and zero forcing number. Properties of the spreads are established and used to determine values of the minimum rank/maximum nullity and zero forcing number for various types of grids with a vertex or edge deleted. (C) 2010 Elsevier Inc. All rights reserved.
引用
收藏
页码:4352 / 4372
页数:21
相关论文
共 33 条
[21]   NOTE ON POSITIVE SEMIDEFINITE MAXIMUM NULLITY AND POSITIVE SEMIDEFINITE ZERO FORCING NUMBER OF PARTIAL 2-TREES [J].
Ekstrand, J. ;
Erickson, C. ;
Hay, D. ;
Hogben, L. ;
Roat, J. .
ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2012, 23 :79-87
[22]   Minimum-rank and maximum-nullity of graphs and their linear preservers [J].
Beasley, LeRoy B. ;
Song, Seok-Zun .
LINEAR & MULTILINEAR ALGEBRA, 2022, 70 (09) :1732-1743
[23]   Proof of a conjecture on the zero forcing number of a graph [J].
Lu, Leihao ;
Wu, Baoyindureng ;
Tang, Zixing .
DISCRETE APPLIED MATHEMATICS, 2016, 213 :233-237
[24]   On the zero forcing number of a graph involving some classical parameters [J].
Li, Shuchao ;
Sun, Wanting .
JOURNAL OF COMBINATORIAL OPTIMIZATION, 2020, 39 (02) :365-384
[25]   Zero forcing number of a graph in terms of the number of pendant vertices [J].
Wang, Xinlei ;
Wong, Dein ;
Zhang, Yuanshuai .
LINEAR & MULTILINEAR ALGEBRA, 2020, 68 (07) :1424-1433
[26]   Zero forcing sets and the minimum rank of graphs [J].
Barioli, Francesco ;
Barrett, Wayne ;
Butler, Steve ;
Cioaba, Sebastian M. ;
Cvetkovic, Dragos ;
Fallat, Shaun M. ;
Godsil, Chris ;
Haemers, Willem ;
Hogben, Leslie ;
Mikkelson, Rana ;
Narayan, Sivaram ;
Pryporova, Olga ;
Sciriha, Irene ;
So, Wasin ;
Stevanovic, Dragan ;
van der Holst, Hein ;
Vander Meulen, Kevin N. ;
Wehe, Amy Wangsness .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2008, 428 (07) :1628-1648
[27]   Some bounds on the zero forcing number of a graph [J].
Gentner, Michael ;
Rautenbach, Dieter .
DISCRETE APPLIED MATHEMATICS, 2018, 236 :203-213
[28]   SPECTRAL BOUNDS FOR THE ZERO FORCING NUMBER OF A GRAPH [J].
Chen, Hongzhang ;
Li, Jianxi ;
Xu, Shou-Jun .
DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2024, 44 (03) :971-982
[29]   On the zero forcing number of a graph involving some classical parameters [J].
Shuchao Li ;
Wanting Sun .
Journal of Combinatorial Optimization, 2020, 39 :365-384
[30]   Some results on the total (zero) forcing number of a graph [J].
Li, Jianxi ;
Tu, Dongxin ;
Shiu, Wai Chee .
JOURNAL OF COMBINATORIAL OPTIMIZATION, 2025, 49 (03)