Vertex and edge spread of zero forcing number, maximum nullity, and minimum rank of a graph

被引:59
作者
Edholm, Christina J. [2 ]
Hogben, Leslie [1 ,3 ]
My Huynh [4 ]
LaGrange, Joshua [1 ]
Row, Darren D. [1 ]
机构
[1] Iowa State Univ, Dept Math, Ames, IA 50011 USA
[2] Willamette Univ, Dept Math, Salem, OR 97301 USA
[3] Amer Inst Math, Palo Alto, CA 94306 USA
[4] Arizona State Univ, Dept Math, Tempe, AZ 85287 USA
基金
美国国家科学基金会;
关键词
Zero spread; Null spread; Rank spread; Zero forcing number; Maximum nullity; Minimum rank; Supertriangle; Grid graph; Triangular grid; King grid; SYMMETRIC-MATRICES; SETS;
D O I
10.1016/j.laa.2010.10.015
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The minimum rank of a simple graph G is defined to be the smallest possible rank over all symmetric real matrices whose ijth entry (for i not equal j) is nonzero whenever {i, j} is an edge in G and is zero otherwise; maximum nullity is taken over the same set of matrices. The zero forcing number is the minimum size of a zero forcing set of vertices and bounds the maximum nullity from above. The spread of a graph parameter at a vertex v or edge e of G is the difference between the value of the parameter on G and on G - v or G - e. Rank spread (at a vertex) was introduced in [4]. This paper introduces vertex spread of the zero forcing number and edge spreads for minimum rank/maximum nullity and zero forcing number. Properties of the spreads are established and used to determine values of the minimum rank/maximum nullity and zero forcing number for various types of grids with a vertex or edge deleted. (C) 2010 Elsevier Inc. All rights reserved.
引用
收藏
页码:4352 / 4372
页数:21
相关论文
共 15 条
[1]  
Barioli F, 2005, ELECTRON J LINEAR AL, V13, P387
[2]   Computation of minimal rank and path cover number for certain graphs [J].
Barioli, F ;
Fallat, S ;
Hogben, L .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2004, 392 :289-303
[3]   Zero forcing sets and the minimum rank of graphs [J].
Barioli, Francesco ;
Barrett, Wayne ;
Butler, Steve ;
Cioaba, Sebastian M. ;
Cvetkovic, Dragos ;
Fallat, Shaun M. ;
Godsil, Chris ;
Haemers, Willem ;
Hogben, Leslie ;
Mikkelson, Rana ;
Narayan, Sivaram ;
Pryporova, Olga ;
Sciriha, Irene ;
So, Wasin ;
Stevanovic, Dragan ;
van der Holst, Hein ;
Vander Meulen, Kevin N. ;
Wehe, Amy Wangsness .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2008, 428 (07) :1628-1648
[4]   Zero forcing parameters and minimum rank problems [J].
Barioli, Francesco ;
Barrett, Wayne ;
Fallat, Shaun M. ;
Hall, H. Tracy ;
Hogben, Leslie ;
Shader, Bryan ;
van den Driessche, P. ;
van der Holst, Hein .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2010, 433 (02) :401-411
[5]   ON THE MINIMUM RANK OF NOT NECESSARILY SYMMETRIC MATRICES: A PRELIMINARY STUDY [J].
Barioli, Francesco ;
Fallat, Shaun M. ;
Hall, H. Tracy ;
Hershkowitz, Daniel ;
Hogben, Leslie ;
Van der Holst, Hein ;
Shader, Bryan .
ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2009, 18 :126-145
[6]  
BARRETT W, MINIMUM RANK PROBLEM
[7]  
de Verdiere YC, 1998, J COMB THEORY B, V74, P121
[8]  
DeLoss L., ISU MINIMUM RANK PRO
[9]   Techniques for determining the minimum rank of a small graph [J].
DeLoss, Laura ;
Grout, Jason ;
Hogben, Leslie ;
McKay, Tracy ;
Smith, Jason ;
Tims, Geoff .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2010, 432 (11) :2995-3001
[10]   The minimum rank of symmetric matrices described by a graph: A survey [J].
Fallat, Shaun M. ;
Hogben, Leslie .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2007, 426 (2-3) :558-582