Vertex and edge spread of zero forcing number, maximum nullity, and minimum rank of a graph

被引:58
作者
Edholm, Christina J. [2 ]
Hogben, Leslie [1 ,3 ]
My Huynh [4 ]
LaGrange, Joshua [1 ]
Row, Darren D. [1 ]
机构
[1] Iowa State Univ, Dept Math, Ames, IA 50011 USA
[2] Willamette Univ, Dept Math, Salem, OR 97301 USA
[3] Amer Inst Math, Palo Alto, CA 94306 USA
[4] Arizona State Univ, Dept Math, Tempe, AZ 85287 USA
基金
美国国家科学基金会;
关键词
Zero spread; Null spread; Rank spread; Zero forcing number; Maximum nullity; Minimum rank; Supertriangle; Grid graph; Triangular grid; King grid; SYMMETRIC-MATRICES; SETS;
D O I
10.1016/j.laa.2010.10.015
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The minimum rank of a simple graph G is defined to be the smallest possible rank over all symmetric real matrices whose ijth entry (for i not equal j) is nonzero whenever {i, j} is an edge in G and is zero otherwise; maximum nullity is taken over the same set of matrices. The zero forcing number is the minimum size of a zero forcing set of vertices and bounds the maximum nullity from above. The spread of a graph parameter at a vertex v or edge e of G is the difference between the value of the parameter on G and on G - v or G - e. Rank spread (at a vertex) was introduced in [4]. This paper introduces vertex spread of the zero forcing number and edge spreads for minimum rank/maximum nullity and zero forcing number. Properties of the spreads are established and used to determine values of the minimum rank/maximum nullity and zero forcing number for various types of grids with a vertex or edge deleted. (C) 2010 Elsevier Inc. All rights reserved.
引用
收藏
页码:4352 / 4372
页数:21
相关论文
共 31 条
  • [1] MINIMUM RANK, MAXIMUM NULLITY, AND ZERO FORCING NUMBER OF SIMPLE DIGRAPHS
    Berliner, Adam
    Catral, Minerva
    Hogben, Leslie
    My Huynh
    Lied, Kelsey
    Young, Michael
    ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2013, 26 : 762 - 780
  • [2] Maximum nullity and zero forcing number of graphs with rank at most 4
    Vatandoost, Ebrahim
    Nozari, Katayoun
    COGENT MATHEMATICS & STATISTICS, 2018, 5 (01):
  • [3] THE MAXIMUM NULLITY OF A COMPLETE SUBDIVISION GRAPH IS EQUAL TO ITS ZERO FORCING NUMBER
    Barrett, Wayne
    Butler, Steve
    Catral, Minerva
    Fallat, Shaun M.
    Hall, H. Tracy
    Hogben, Leslie
    Young, Michael
    ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2014, 27 : 444 - 457
  • [4] TECHNIQUES FOR DETERMINING EQUALITY OF THE MAXIMUM NULLITY AND THE ZERO FORCING NUMBER OF A GRAPH
    Young, Derek
    ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2021, 37 : 295 - 315
  • [5] A technique for computing the zero forcing number of a graph with a cut-vertex
    Row, Darren D.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2012, 436 (12) : 4423 - 4432
  • [6] POSITIVE SEMIDEFINITE MAXIMUM NULLITY AND ZERO FORCING NUMBER
    Peters, Travis
    ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2012, 23 : 815 - 830
  • [7] Parameters Related to Tree-Width, Zero Forcing, and Maximum Nullity of a Graph
    Barioli, Francesco
    Barrett, Wayne
    Fallat, Shaun M.
    Hall, H. Tracy
    Hogben, Leslie
    Shader, Bryan
    van den Driessche, P.
    van der Holst, Hein
    JOURNAL OF GRAPH THEORY, 2013, 72 (02) : 146 - 177
  • [8] On minimum rank and zero forcing sets of a graph
    Huang, Liang-Hao
    Chang, Gerard J.
    Yeh, Hong-Gwa
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2010, 432 (11) : 2961 - 2973
  • [9] ZERO FORCING NUMBER, MAXIMUM NULLITY, AND PATH COVER NUMBER OF SUBDIVIDED GRAPHS
    Catral, Minerva
    Cepek, Anna
    Hogben, Leslie
    My Huynh
    Lazebnik, Kirill
    Peters, Travis
    Young, Michael
    ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2012, 23 : 906 - 922
  • [10] Families of graphs with maximum nullity equal to zero forcing number
    Alameda, Joseph S.
    Curl, Emelie
    Grez, Armando
    Hogben, Leslie
    Kingston, O'Neill
    Schulte, Alex
    Young, Derek
    Young, Michael
    SPECIAL MATRICES, 2018, 6 (01): : 56 - 67