Principally quasi-injective modules

被引:37
作者
Nicholson, WK [1 ]
Park, JK
Yousif, MF
机构
[1] Univ Calgary, Dept Math, Calgary, AB T2N 1N4, Canada
[2] Pusan Natl Univ, Dept Math Educ, Pusan 609735, South Korea
[3] Ohio State Univ, Dept Math, Lima, OH 45804 USA
关键词
D O I
10.1080/00927879908826521
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
An R-module M is called principally quasi-injective if each R-homomorphism from a principal submodule of M to M can be extended to an endomorphism of M. Many properties of principally injective rings and quasi-injective modules are extended to these modules. As one application, we show that, for a finite-dimensional quasi-injective module M in which every maximal uniform submodule is fully invariant, there is a bijection between the set of indecomposable summands of M and the maximal left ideals of the endomorphism ring of M.
引用
收藏
页码:1683 / 1693
页数:11
相关论文
共 10 条
[1]  
Camillo V.P., 1989, PORT MATH, V46, P33
[2]   ON SEMILOCAL RINGS [J].
CAMPS, R ;
DICKS, W .
ISRAEL JOURNAL OF MATHEMATICS, 1993, 81 (1-2) :203-211
[3]   PROPERTIES OF DIRECT SUMMANDS OF MODULES [J].
GARCIA, JL .
COMMUNICATIONS IN ALGEBRA, 1989, 17 (01) :73-92
[4]   P-injective endomorphism rings [J].
Khuri, SM .
COMMUNICATIONS IN ALGEBRA, 1996, 24 (12) :3759-3769
[5]   SEMIREGULAR MODULES AND RINGS [J].
NICHOLSON, WK .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1976, 28 (05) :1105-1120
[6]   PRINCIPALLY INJECTIVE-RINGS [J].
NICHOLSON, WK ;
YOUSIF, MF .
JOURNAL OF ALGEBRA, 1995, 174 (01) :77-93
[7]  
STEPHENSON W, 1974, P LOND MATH SOC, V28, P291
[8]   MODULES WITH THE SUMMAND INTERSECTION PROPERTY [J].
WILSON, GV .
COMMUNICATIONS IN ALGEBRA, 1986, 14 (01) :21-38
[9]  
Wisbauer, 1991, FDN MODULE RING THEO
[10]   REGULAR MODULES [J].
ZELMANOWITZ, J .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1972, 163 (NJAN) :341-+