Characterization conditions and the numerical index

被引:2
作者
Aksoy, Asuman Guven [1 ]
Lewicki, Grzegorz [2 ]
机构
[1] Claremont Mckenna Coll, Dept Math, Claremont, CA 91711 USA
[2] Jagiellonian Univ, Dept Math, Lojasiewicza 6, PL-30348 Krakow, Poland
来源
TOPICS IN FUNCTIONAL ANALYSIS AND ALGEBRA | 2016年 / 672卷
关键词
Numerical index; numerical radius; characterization conditions; VALUED FUNCTION-SPACES; C-STAR-ALGEBRAS; BANACH-SPACES; NORMED SPACE; OPERATORS; RADIUS; DUALITY;
D O I
10.1090/conm/672/13475
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper we survey some recent results concerning the numerical index n(.) for large classes of Banach spaces, including vector valued l(p)-spaces and l(p)-sums of Banach spaces where 1 <= p <= infinity. In particular by defining two conditions on a norm of a Banach space X, namely a Local Characterization Condition (LCC) and a Global Characterization Condition (GCC), we are able to show that if a norm on X satisfies the (LCC), then n(X) = lim(m)n(X-m). For the case in which N is replaced by a directed, infinite set S, we will prove an analogous result for X satisfying the (GCC). Our approach is motivated by the fact that n(L-p(mu, X)) = n(l(p)(X)) = lim(m)n(l(p)(m)(X)).
引用
收藏
页码:17 / 31
页数:15
相关论文
共 35 条
[1]  
Acosta M. D., 2000, EXTRACTA MATH, V15, P247
[2]   Minimal numerical-radius extensions of operators [J].
Aksoy, A. G. ;
Chalmers, B. L. .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2007, 135 (04) :1039-1050
[3]   Limit theorems for the numerical index [J].
Aksoy, Asuman Gueven ;
Lewicki, Grzegorz .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2013, 398 (01) :296-302
[4]   Best Approximation in Numerical Radius [J].
Aksoy, Asuman Gueven ;
Lewicki, Grzegorz .
NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2011, 32 (06) :593-609
[5]  
Bonsall F. F., 1973, LONDON MATH SOC LECT, V10
[6]   Numerical index of Banach spaces and duality [J].
Boyko, Kostyantyn ;
Kadets, Vladimir ;
Martin, Miguel ;
Werner, Dirk .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 2007, 142 :93-102
[7]   NUMERICAL RADIUS OF RANK-1 OPERATORS ON BANACH SPACES [J].
Chica, Mario ;
Martin, Miguel ;
Meri, Javier .
QUARTERLY JOURNAL OF MATHEMATICS, 2014, 65 (01) :89-100
[8]   The polynomial numerical index of a Banach space [J].
Choi, YS ;
Garcia, D ;
Kim, SG ;
Maestre, T .
PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 2006, 49 :39-52
[9]   CHARACTERIZATIONS OF COMMUTATIVITY FOR C-STAR-ALGEBRAS [J].
CRABB, MJ ;
DUNCAN, J ;
MCGREGOR, CM .
GLASGOW MATHEMATICAL JOURNAL, 1974, 15 (SEP) :172-175
[10]  
DUNCAN J, 1970, J LONDON MATH SOC, V2, P481