Spatiotemporal Variation of Evapotranspiration on Different Land Use/Cover in the Inner Mongolia Reach of the Yellow River Basin

被引:17
|
作者
Zhang, Xiaojing [1 ]
Wang, Guoqiang [1 ]
Xue, Baolin [1 ]
Wang, Yuntao [1 ]
Wang, Libo [1 ]
机构
[1] Beijing Normal Univ, Coll Water Sci, Beijing Key Lab Urban Hydrol Cycle & Sponge City, Beijing 100875, Peoples R China
关键词
evapotranspiration; soil moisture; TreeExplainer-based Shapley additive explanation (SHAP); threshold effect; arid and semi-arid region; LOESS PLATEAU; SPATIAL-PATTERN; SOLAR-RADIATION; BLACK-BOX; HEAT-FLUX; CHINA; VEGETATION; SOIL; AFFORESTATION; TEMPERATURE;
D O I
10.3390/rs14184499
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The accurate estimation of global evapotranspiration (ET) is essential to understanding the water cycle and land-atmosphere feedbacks in the Earth system. This study focused on the Inner Mongolia Reach of the Yellow River Basin, a typical arid and semi-arid region. Although there are many remote sensing ET datasets, many of the ET algorithms have not considered the impact of soil moisture, especially in water-limited areas. In this paper, the new PT-JPL model, which incorporates soil moisture into ET simulation, is used to improve the accuracy of ET simulation in water-limited areas. The simulation value is evaluated using two Hobq Desert eddy-covariance towers and the Penman-Monteith-Leuning version 2 (PML-V2) dataset. The new PT-JPL model shows the most significant improvements in water-limited regions; the coefficient of determination can reach 0.826, and the RMSE can reduce to 9.645 W/m(2). Soil evaporation is central to the actual ET increase in the study area. Implementing ecological restoration projects reduced the exposed area of land in the study area and reduced the rate of total ET effectively. Furthermore, the most advanced machine learning local interpretation algorithm-the TreeExplainer-based Shapley additive explanation (SHAP) method-was used to identify the driving factors of ET capacity under different land use types. Temperature, NDVI, and root zone soil moisture were the main environmental factors causing ET changes in different plants. Meanwhile, temperature and root zone soil moisture had a noticeable coupling effect, except for grassland. Furthermore, a threshold effect of temperature to ET was found, and the value is 25, 30, and 30 degrees C in the forest, grassland, and cropland, respectively. This study provides an essential reference for accurately describing the ET characteristics of arid and semi-arid regions to achieve the efficient management of water resources.
引用
收藏
页数:16
相关论文
共 50 条
  • [21] Spatiotemporal Variation of Runoff and Its Influencing Factors in the Yellow River Basin, China
    Cui, Jingkai
    Jian, Shengqi
    WATER, 2023, 15 (11)
  • [22] Spatiotemporal Changes and Driving Factors of Land Use/Land Cover (LULC) in the Wuding River Basin, China: Impacts of Ecological Restoration
    Sun, Tingyu
    Ni, Mingxia
    Yang, Yinuo
    Fang, Yu
    Xia, Jianxin
    SUSTAINABILITY, 2024, 16 (23)
  • [23] The role of climate change and vegetation greening on evapotranspiration variation in the Yellow River Basin, China
    Zhao, Fubo
    Ma, Shuai
    Wu, Yiping
    Qiu, Linjing
    Wang, Wenke
    Lian, Yanqing
    Chen, Ji
    Sivakumar, Bellie
    AGRICULTURAL AND FOREST METEOROLOGY, 2022, 316
  • [24] Runoff sensitivity increases with land use/cover change contributing to runoff decline across the middle reaches of the Yellow River basin
    Wang, Yaping
    Wang, Shuai
    Wang, Cong
    Zhao, Wenwu
    JOURNAL OF HYDROLOGY, 2021, 600
  • [25] Effect of landscape restoration on evapotranspiration and water use in the Yellow River Basin, China
    Jian, Shengqi
    Wang, Aoxue
    Hu, Caihong
    Yan, Denghua
    ACTA GEOPHYSICA, 2024, 72 (01) : 341 - 356
  • [26] Spatiotemporal changes of land use in Henan section of the Yellow River Basin from 2008 to 2017
    Zhang, Xiaoping
    Ding, Xinhong
    Liu, Huaipeng
    Li, Yongyong
    Zhang, Chuancai
    Sun, Zehang
    EARTH RESOURCES AND ENVIRONMENTAL REMOTE SENSING/GIS APPLICATIONS XIII, 2022, 12268
  • [27] Characteristics of surface evapotranspiration and its response to climate and land use and land cover in the Huai River Basin of eastern China
    Meng Li
    Ronghao Chu
    Abu Reza Md. Towfiqul Islam
    Shuanghe Shen
    Environmental Science and Pollution Research, 2021, 28 : 683 - 699
  • [28] The effects of rainfall characteristics and land use and cover change on runoff in the Yellow River basin, China
    Hu, CaiHong
    Ran, Guang
    Li, Gang
    Yu, Yun
    Wu, Qiang
    Yan, Denghua
    Jian, Shengqi
    JOURNAL OF HYDROLOGY AND HYDROMECHANICS, 2021, 69 (01) : 29 - 40
  • [29] Quantifying the impacts of land use/land cover change on the water balance in the afforested River Basin, Pakistan
    Saddique, Naeem
    Mahmood, Talha
    Bernhofer, Christian
    ENVIRONMENTAL EARTH SCIENCES, 2020, 79 (19)
  • [30] Effects of climate variability and land use/land cover change on the Daihai wetland of central Inner Mongolia over the past decades
    Chun Xi
    Qin Fu-ying
    Zhou Hai-jun
    Dan Dan
    Xia Ying-ying
    Ulambadrakh, Khukhuudei
    JOURNAL OF MOUNTAIN SCIENCE, 2020, 17 (12) : 3070 - 3084