Mineral Formation in the Larval Zebrafish Tail Bone Occurs via an Acidic Disordered Calcium Phosphate Phase

被引:63
作者
Akiva, Anat [1 ]
Kerschnitzki, Michael [1 ]
Pinkas, Iddo [2 ]
Wagermaier, Wolfgang [3 ]
Yaniv, Karina [4 ]
Fratzl, Peter [3 ]
Addadi, Lia [1 ]
Weiner, Steve [1 ]
机构
[1] Weizmann Inst Sci, Dept Biol Struct, IL-76100 Rehovot, Israel
[2] Weizmann Inst Sci, Dept Chem Res Support, IL-76100 Rehovot, Israel
[3] Max Planck Inst Colloids & Interfaces, Dept Biomat, D-14476 Potsdam, Germany
[4] Weizmann Inst Sci, Dept Biol Regulat, IL-76100 Rehovot, Israel
关键词
STATE NMR-SPECTROSCOPY; OCTACALCIUM PHOSPHATE; RAMAN-SPECTROSCOPY; RADULAR TEETH; BIOMINERALIZATION; CARBONATE; IDENTIFICATION; TRANSFORMATION; DEPOSITION; PATHWAYS;
D O I
10.1021/jacs.6b09442
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Both in vivo and ex vivo observations support the hypothesis that bone mineral formation proceeds via disordered precursor phases. The characteristics of the precursor phases are not well defined, but octacalcium phosphate-like, amorphous calcium phosphate-like, and HPO42--enriched phases were detected. Here we use in vivo Raman spectroscopy and high-resolution wide-angle X-ray diffraction (WAXD) to characterize and map at 2 mu m resolution the mineral phases in the rapidly forming tail fin bones of living zebrafish larvae and zebrafish larvae immediately after sacrifice, respectively. Raman spectroscopy shows the presence of an acidic disordered calcium phosphate phase with additional characteristic features of HPO42- at the bone cell interface. The complexity in the position and shape of the v(1) PO4 peak viewed by in vivo Raman spectroscopy emphasizes the heterogeneity of the mineral during bone formation. WAXD detects an additional isolated peak, appearing alone or together with the characteristic diffraction pattern of carbonated hydroxyapatite. This unidentified phase is located at the interface between the mature bone and the surrounding tissue, similar to the location at which the disordered phase was observed by Raman spectroscopy. The variable peak positions and profiles support the notion that this is an unstable disordered precursor phase, which conceivably crystallized during the X-ray diffraction measurement. Interestingly, this precursor phase is co-aligned with the c-axes of the mature bone crystals and thus is in intimate relation with the surrounding collagen matrix. We conclude that a major disordered precursor mineral phase containing HPO42- is part of the deposition pathway of the rapidly forming tail fin bones of the zebrafish.
引用
收藏
页码:14481 / 14487
页数:7
相关论文
共 35 条
[1]   Taking advantage of disorder: Amorphous calcium carbonate and its roles in biomineralization [J].
Addadi, L ;
Raz, S ;
Weiner, S .
ADVANCED MATERIALS, 2003, 15 (12) :959-970
[2]   On the pathway of mineral deposition in larval zebrafish caudal fin bone [J].
Akiva, Anat ;
Malkinson, Guy ;
Masic, Admir ;
Kerschnitzki, Michael ;
Bennet, Mathieu ;
Fratzl, Peter ;
Addadi, Lia ;
Weiner, Steve ;
Yaniv, Karma .
BONE, 2015, 75 :192-200
[3]   ApoB-containing lipoproteins regulate angiogenesis by modulating expression of VEGF receptor 1 [J].
Avraham-Davidi, Inbal ;
Ely, Yona ;
Pham, Van N. ;
Castranova, Daniel ;
Grunspan, Moshe ;
Malkinson, Guy ;
Gibbs-Bar, Liron ;
Mayseless, Oded ;
Allmog, Gabriella ;
Lo, Brigid ;
Warren, Carmen M. ;
Chen, Tom T. ;
Ungos, Josette ;
Kidd, Kameha ;
Shaw, Kenna ;
Rogachev, Ilana ;
Wan, Wuzhou ;
Murphy, Philip M. ;
Farber, Steven A. ;
Carmel, Liran ;
Shelness, Gregory S. ;
Iruela-Arispe, M. Luisa ;
Weinstein, Brant M. ;
Yaniv, Karina .
NATURE MEDICINE, 2012, 18 (06) :967-+
[4]   A customizable software for fast reduction and analysis of large X-ray scattering data sets: applications of the new DPDAK package to small-angle X-ray scattering and grazing-incidence small-angle X-ray scattering [J].
Benecke, Gunthard ;
Wagermaier, Wolfgang ;
Li, Chenghao ;
Schwartzkopf, Matthias ;
Flucke, Gero ;
Hoerth, Rebecca ;
Zizak, Ivo ;
Burghammer, Manfred ;
Metwalli, Ezzeldin ;
Mueller-Buschbaum, Peter ;
Trebbin, Martin ;
Foerster, Stephan ;
Paris, Oskar ;
Roth, Stephan V. ;
Fratzl, Peter .
JOURNAL OF APPLIED CRYSTALLOGRAPHY, 2014, 47 :1797-1803
[5]   Transient amorphous calcium phosphate in forming enamel [J].
Beniash, Elia ;
Metzler, Rebecca A. ;
Lam, Raymond S. K. ;
Gilbert, P. U. P. A. .
JOURNAL OF STRUCTURAL BIOLOGY, 2009, 166 (02) :133-143
[6]   Simultaneous Raman Microspectroscopy and Fluorescence Imaging of Bone Mineralization in Living Zebrafish Larvae [J].
Bennet, M. ;
Akiva, A. ;
Faivre, D. ;
Malkinson, G. ;
Yaniv, K. ;
Abdelilah-Seyfried, S. ;
Fratzl, P. ;
Masic, A. .
BIOPHYSICAL JOURNAL, 2014, 106 (04) :L17-L19
[7]   CRYSTALLOGRAPHY OF OCTACALCIUM PHOSPHATE [J].
BROWN, WE ;
LEHR, JR ;
SMITH, JP ;
FRAZIER, AW .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1957, 79 (19) :5318-5319
[8]   Raman spectroscopic evidence for octacalcium phosphate and other transient mineral species deposited during intramembranous mineralization [J].
Crane, Nicole J. ;
Popescu, Victoria ;
Morris, Michael D. ;
Steenhuis, Pieter ;
Ignelzi, Michael A., Jr. .
BONE, 2006, 39 (03) :434-442
[9]   Nanoscale Transforming Mineral Phases in Fresh Nacre [J].
DeVol, Ross T. ;
Sun, Chang-Yu ;
Marcus, Matthew A. ;
Coppersmith, Susan N. ;
Myneni, Satish C. B. ;
Gilbert, Pupa U. P. A. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2015, 137 (41) :13325-13333
[10]   Early pattern of calcification in the dorsal carapace of the blue crab, Callinectes sapidus [J].
Dillaman, R ;
Hequembourg, S ;
Gay, M .
JOURNAL OF MORPHOLOGY, 2005, 263 (03) :356-374