Polariton lasing vs. photon lasing in a semiconductor microcavity

被引:374
作者
Deng, H
Weihs, G
Snoke, D
Bloch, J
Yamamoto, Y
机构
[1] Stanford Univ, Edward L Ginzton Lab, Japan Sci & Technol Corp, Quantum Entanglement Project,ICORP, Stanford, CA 94305 USA
[2] Univ Tokyo, Inst Ind Sci, Meguro Ku, Tokyo 1538904, Japan
[3] Univ Pittsburgh, Dept Phys & Astron, Pittsburgh, PA 15260 USA
[4] CNRS, Lab Photon & Nanostruct, F-91460 Marcoussis, France
[5] NTT Corp, Basic Res Labs, Astugishi, Kanagawa 2430198, Japan
关键词
D O I
10.1073/pnas.2634328100
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Nearly one decade after the first observation of Bose-Einstein condensation in atom vapors and realization of matter-wave (atom) lasers, similar concepts have been demonstrated recently for polaritons: half-matter, half-light quasiparticles in semiconductor microcavities. The half-light nature of polaritons makes polariton lasers promising as a new source of coherent and nonclassical light with extremely low threshold energy. The half-matter nature makes polariton lasers a unique test bed for many-body theories and cavity quantum electrodynamics. In this article, we present a series of experimental studies of a polariton laser, exploring its properties as a relatively dense degenerate Bose gas and comparing it to a photon laser achieved in the same structure. The polaritons have an effective mass that is twice the cavity photon effective mass, yet seven orders of magnitude less than the hydrogen atom mass; hence, they can potentially condense at temperatures seven orders of magnitude higher than those required for atom Bose-Einstein condensations. Accompanying the phase transition, a polariton laser emits coherent light but at a threshold carrier density two orders of magnitude lower than that needed for a normal photon laser in a same structure. It also is shown that, beyond threshold, the polariton population splits to a thermal equilibrium Bose-Einstein distribution at in-plane wave number k(parallel to) > 0 and a nonequilibrium condensate at kparallel to similar to 0, with a chemical potential approaching to zero. The spatial distributions and polarization characteristics of polaritons also are discussed as unique signatures of a polariton laser.
引用
收藏
页码:15318 / 15323
页数:6
相关论文
共 35 条
[1]   Parametric oscillation in a vertical microcavity: A polariton condensate or micro-optical parametric oscillation [J].
Baumberg, JJ ;
Savvidis, PG ;
Stevenson, RM ;
Tartakovskii, AI ;
Skolnick, MS ;
Whittaker, DM ;
Roberts, JS .
PHYSICAL REVIEW B, 2000, 62 (24) :16247-16250
[2]   DEFINITION OF A LASER THRESHOLD [J].
BJORK, G ;
KARLSSON, A ;
YAMAMOTO, Y .
PHYSICAL REVIEW A, 1994, 50 (02) :1675-1680
[3]   BOSE-EINSTEIN CONDENSATION OF EXCITONS [J].
BLATT, JM ;
BRANDT, W ;
BOER, KW .
PHYSICAL REVIEW, 1962, 126 (05) :1691-&
[4]   Giant Rabi splitting in a microcavity containing distributed quantum wells [J].
Bloch, J ;
Freixanet, T ;
Marzin, JY ;
Thierry-Mieg, V ;
Planel, R .
APPLIED PHYSICS LETTERS, 1998, 73 (12) :1694-1696
[5]   Macroscopically ordered state in an exciton system [J].
Butov, LV ;
Gossard, AC ;
Chemla, DS .
NATURE, 2002, 418 (6899) :751-754
[6]   Parametric luminescence of microcavity polaritons [J].
Ciuti, C ;
Schwendimann, P ;
Quattropani, A .
PHYSICAL REVIEW B, 2001, 63 (04)
[7]   EXCITON BOSE CONDENSATION - THE GROUND-STATE OF AN ELECTRON-HOLE GAS .1. MEAN FIELD DESCRIPTION OF A SIMPLIFIED MODEL [J].
COMTE, C ;
NOZIERES, P .
JOURNAL DE PHYSIQUE, 1982, 43 (07) :1069-1081
[8]   Stimulation of polariton photoluminescence in semiconductor microcavity [J].
Dang, LS ;
Heger, D ;
Andre, R ;
Boeuf, F ;
Romestain, R .
PHYSICAL REVIEW LETTERS, 1998, 81 (18) :3920-3923
[9]   Condensation of semiconductor microcavity exciton polaritons [J].
Deng, H ;
Weihs, G ;
Santori, C ;
Bloch, J ;
Yamamoto, Y .
SCIENCE, 2002, 298 (5591) :199-202
[10]   Bose condensation of cavity polaritons beyond the linear regime: The thermal equilibrium of a model microcavity [J].
Eastham, PR ;
Littlewood, PB .
PHYSICAL REVIEW B, 2001, 64 (23)