A Topological Loss Function for Deep-Learning Based Image Segmentation Using Persistent Homology

被引:152
作者
Clough, James R. [1 ]
Byrne, Nicholas [1 ]
Oksuz, Ilkay [1 ,2 ]
Zimmer, Veronika A. [1 ]
Schnabel, Julia A. [1 ]
King, Andrew P. [1 ]
机构
[1] Kings Coll London, Sch Biomed Engn & Imaging Sci, London WC2R 2LS, England
[2] Istanbul Tech Univ, Comp Engn Dept, TR-34467 Istanbul, Turkey
基金
英国工程与自然科学研究理事会; 英国惠康基金;
关键词
Image segmentation; Topology; Shape; Training; Loss measurement; Neural networks; Network topology; Segmentation; persistent homology; topology; medical imaging; convolutional neural networks;
D O I
10.1109/TPAMI.2020.3013679
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We introduce a method for training neural networks to perform image or volume segmentation in which prior knowledge about the topology of the segmented object can be explicitly provided and then incorporated into the training process. By using the differentiable properties of persistent homology, a concept used in topological data analysis, we can specify the desired topology of segmented objects in terms of their Betti numbers and then drive the proposed segmentations to contain the specified topological features. Importantly this process does not require any ground-truth labels, just prior knowledge of the topology of the structure being segmented. We demonstrate our approach in four experiments: one on MNIST image denoising and digit recognition, one on left ventricular myocardium segmentation from magnetic resonance imaging data from the UK Biobank, one on the ACDC public challenge dataset and one on placenta segmentation from 3-D ultrasound. We find that embedding explicit prior knowledge in neural network segmentation tasks is most beneficial when the segmentation task is especially challenging and that it can be used in either a semi-supervised or post-processing context to extract a useful training gradient from images without pixelwise labels.
引用
收藏
页码:8766 / 8778
页数:13
相关论文
共 42 条
[1]  
[Anonymous], 2015, GUDHI User and ReferenceManual
[2]  
Assaf R., 2017, PROC 4 INT C ADV BIO, P1
[3]   PERSISTENT HOMOLOGY ANALYSIS OF BRAIN ARTERY TREES [J].
Bendich, Paul ;
Marron, J. S. ;
Miller, Ezra ;
Pieloch, Alex ;
Skwerer, Sean .
ANNALS OF APPLIED STATISTICS, 2016, 10 (01) :198-218
[4]   Deep Learning Techniques for Automatic MRI Cardiac Multi-Structures Segmentation and Diagnosis: Is the Problem Solved? [J].
Bernard, Olivier ;
Lalande, Alain ;
Zotti, Clement ;
Cervenansky, Frederick ;
Yang, Xin ;
Heng, Pheng-Ann ;
Cetin, Irem ;
Lekadir, Karim ;
Camara, Oscar ;
Gonzalez Ballester, Miguel Angel ;
Sanroma, Gerard ;
Napel, Sandy ;
Petersen, Steffen ;
Tziritas, Georgios ;
Grinias, Elias ;
Khened, Mahendra ;
Kollerathu, Varghese Alex ;
Krishnamurthi, Ganapathy ;
Rohe, Marc-Michel ;
Pennec, Xavier ;
Sermesant, Maxime ;
Isensee, Fabian ;
Jaeger, Paul ;
Maier-Hein, Klaus H. ;
Full, Peter M. ;
Wolf, Ivo ;
Engelhardt, Sandy ;
Baumgartner, Christian F. ;
Koch, Lisa M. ;
Wolterink, Jelmer M. ;
Isgum, Ivana ;
Jang, Yeonggul ;
Hong, Yoonmi ;
Patravali, Jay ;
Jain, Shubham ;
Humbert, Olivier ;
Jodoin, Pierre-Marc .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2018, 37 (11) :2514-2525
[5]  
Brüel-Gabrielsson R, 2020, PR MACH LEARN RES, V108, P1553
[6]   A systematic review of image segmentation methodology, used in the additive manufacture of patient-specific 3D printed models of the cardiovascular system [J].
Byrne, N. ;
Forte, M. Velasco ;
Tandon, A. ;
Valverde, I. ;
Hussain, T. .
JRSM CARDIOVASCULAR DISEASE, 2016, 5 :1-9
[7]   Topology-Preserving Augmentation for CNN-Based Segmentation of Congenital Heart Defects from 3D Paediatric CMR [J].
Byrne, Nick ;
Clough, James R. ;
Valverde, Isra ;
Montana, Giovanni ;
King, Andrew P. .
SMART ULTRASOUND IMAGING AND PERINATAL, PRETERM AND PAEDIATRIC IMAGE ANALYSIS, SUSI 2019, PIPPI 2019, 2019, 11798 :181-188
[8]   PHom-GeM: Persistent Homology for Generative Models [J].
Charlier, Jeremy ;
State, Radu ;
Hilger, Jean .
2019 6TH SWISS CONFERENCE ON DATA SCIENCE (SDS), 2019, :87-92
[9]  
Chen C, 2019, PR MACH LEARN RES, V89
[10]  
Cicek Ozgun, 2016, Medical Image Computing and Computer-Assisted Intervention - MICCAI 2016. 19th International Conference. Proceedings: LNCS 9901, P424, DOI 10.1007/978-3-319-46723-8_49