ON CONVERGENCE OF THE PROXIMAL POINT ALGORITHM IN BANACH SPACES

被引:9
作者
Matsushita, Shin-ya [1 ]
Xu, Li [1 ]
机构
[1] Akita Prefectural Univ, Dept Elect & Informat Syst, Fac Syst Sci & Technol, Yurihonjo City, Akita 0150055, Japan
关键词
Proximal point algorithm; finite termination of algorithm; maximal monotone operator; paramonotone operator; Banach space; weak sharp minima; WEAK SHARP MINIMA; MONOTONE-OPERATORS; MAXIMAL MONOTONICITY; PROOF;
D O I
10.1090/S0002-9939-2011-10883-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we give a sufficient condition which guarantees that the sequence generated by the proximal point algorithm terminates after a finite number of iterations.
引用
收藏
页码:4087 / 4095
页数:9
相关论文
共 31 条
[1]  
Alber Y.I., 1996, LECT NOTES PURE APPL, P15
[2]  
Alves MM, 2008, J CONVEX ANAL, V15, P345
[3]  
[Anonymous], NONLINEAR FUNCTIONAL
[4]  
[Anonymous], 1998, Variational Analysis
[5]  
[Anonymous], 1986, CONVEXITY OPTIMIZATI
[6]  
Aubin J-P., 1984, APPL NONLINEAR ANAL
[7]   A new proximal point iteration that converges weakly but not in norm [J].
Bauschke, HH ;
Burke, JV ;
Deutsch, FR ;
Hundal, HS ;
Vanderwerff, JD .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2005, 133 (06) :1829-1835
[8]   Construction of best Bregman approximations in reflexive Banach spaces [J].
Bauschke, HH ;
Combettes, PL .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2003, 131 (12) :3757-3766
[9]   INFINITE PRODUCTS OF RESOLVENTS [J].
BREZIS, H ;
LIONS, PL .
ISRAEL JOURNAL OF MATHEMATICS, 1978, 29 (04) :329-345
[10]  
Burke JV, 2002, CONTROL CYBERN, V31, P439