Optimum Designs for Next-Generation Sequencing to Discover Rare Variants for Common Complex Disease

被引:25
作者
Shi, Gang [1 ,2 ]
Rao, D. C. [1 ,2 ,3 ,4 ]
机构
[1] Washington Univ, Sch Med, Div Biostat, St Louis, MO 63110 USA
[2] Washington Univ, Sch Med, Dept Genet, St Louis, MO 63110 USA
[3] Washington Univ, Sch Med, Dept Psychiat, St Louis, MO 63110 USA
[4] Washington Univ, Sch Med, Dept Math, St Louis, MO 63110 USA
关键词
next-generation sequencing; rare variants; enrichment; study design; complex diseases; linkage; GENOME-WIDE ASSOCIATION; BLOOD-PRESSURE; LINKAGE; TRAITS; FAMILY; LOCI; GENE;
D O I
10.1002/gepi.20597
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Recent advances in next-generation sequencing technologies make it affordable to search for rare and functional variants for common complex diseases systematically. We investigated strategies for enriching rare variants in the samples selected for sequencing so as to optimize the power for their discovery. In particular, we investigated the roles of alternative sources of enrichment in families through computer simulations. We showed that linkage information, extreme phenotype, and nonrandom ascertainment, such as multiply affected families, constitute different sources for enriching rare and functional variants in a sequencing study design. Linkage is well known to have limited power for detecting small genetic effects, and hence not considered to be a powerful tool for discovering variants for common complex diseases. However, those families with some degree of family-specific linkage evidence provide an effective sampling strategy to sub-select the most linkage-informative families for sequencing. Compared with selecting subjects with extreme phenotypes, linkage evidence performs better with larger families, while extreme-phenotype method is more efficient with smaller families. Families with multiple affected siblings were found to provide the largest enrichment of rare variants. Finally, we showed that combined strategies, such as selecting linkage-informative families from multiply affected families, provide much higher enrichment of rare functional variants than either strategy alone. Genet. Epidemiol. 35: 572-579, 2011. (C) 2011 Wiley-Liss, Inc.
引用
收藏
页码:572 / 579
页数:8
相关论文
共 19 条
[1]   Merlin-rapid analysis of dense genetic maps using sparse gene flow trees [J].
Abecasis, GR ;
Cherny, SS ;
Cookson, WO ;
Cardon, LR .
NATURE GENETICS, 2002, 30 (01) :97-101
[2]   Statistical analysis strategies for association studies involving rare variants [J].
Bansal, Vikas ;
Libiger, Ondrej ;
Torkamani, Ali ;
Schork, Nicholas J. .
NATURE REVIEWS GENETICS, 2010, 11 (11) :773-785
[3]   Common and rare variants in multifactorial susceptibility to common diseases [J].
Bodmer, Walter ;
Bonilla, Carolina .
NATURE GENETICS, 2008, 40 (06) :695-701
[4]   Molecular basis of a linkage peak: exome sequencing and family-based analysis identify a rare genetic variant in the ADIPOQ gene in the IRAS Family Study [J].
Bowden, Donald W. ;
An, S. Sandy ;
Palmer, Nicholette D. ;
Brown, W. Mark ;
Norris, Jill M. ;
Haffner, Stephen M. ;
Hawkins, Gregory A. ;
Guo, Xiuqing ;
Rotter, Jerome I. ;
Chen, Y. -D. Ida ;
Wagenknecht, Lynne E. ;
Langefeld, Carl D. .
HUMAN MOLECULAR GENETICS, 2010, 19 (20) :4112-4120
[5]   Uncovering the roles of rare variants in common disease through whole-genome sequencing [J].
Cirulli, Elizabeth T. ;
Goldstein, David B. .
NATURE REVIEWS GENETICS, 2010, 11 (06) :415-425
[6]   Potential etiologic and functional implications of genome-wide association loci for human diseases and traits [J].
Hindorff, Lucia A. ;
Sethupathy, Praveen ;
Junkins, Heather A. ;
Ramos, Erin M. ;
Mehta, Jayashri P. ;
Collins, Francis S. ;
Manolio, Teri A. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2009, 106 (23) :9362-9367
[7]   Genome-wide association study of blood pressure and hypertension [J].
Levy, Daniel ;
Ehret, Georg B. ;
Rice, Kenneth ;
Verwoert, Germaine C. ;
Launer, Lenore J. ;
Dehghan, Abbas ;
Glazer, Nicole L. ;
Morrison, Alanna C. ;
Johnson, Andrew D. ;
Aspelund, Thor ;
Aulchenko, Yurii ;
Lumley, Thomas ;
Koettgen, Anna ;
Vasan, Ramachandran S. ;
Rivadeneira, Fernando ;
Eiriksdottir, Gudny ;
Guo, Xiuqing ;
Arking, Dan E. ;
Mitchell, Gary F. ;
Mattace-Raso, Francesco U. S. ;
Smith, Albert V. ;
Taylor, Kent ;
Scharpf, Robert B. ;
Hwang, Shih-Jen ;
Sijbrands, Eric J. G. ;
Bis, Joshua ;
Harris, Tamara B. ;
Ganesh, Santhi K. ;
O'Donnell, Christopher J. ;
Hofman, Albert ;
Rotter, Jerome I. ;
Coresh, Josef ;
Benjamin, Emelia J. ;
Uitterlinden, Andre G. ;
Heiss, Gerardo ;
Fox, Caroline S. ;
Witteman, Jacqueline C. M. ;
Boerwinkle, Eric ;
Wang, Thomas J. ;
Gudnason, Vilmundur ;
Larson, Martin G. ;
Chakravarti, Aravinda ;
Psaty, Bruce M. ;
van Duijn, Cornelia M. .
NATURE GENETICS, 2009, 41 (06) :677-687
[8]   Discovery of Rare Variants via Sequencing: Implications for the Design of Complex Trait Association Studies [J].
Li, Bingshan ;
Leal, Suzanne M. .
PLOS GENETICS, 2009, 5 (05)
[9]  
LIU DJ, 2009, AM J HUM GENET S, V82, P51
[10]   A Groupwise Association Test for Rare Mutations Using a Weighted Sum Statistic [J].
Madsen, Bo Eskerod ;
Browning, Sharon R. .
PLOS GENETICS, 2009, 5 (02)