Superconvergence analysis for nonlinear reaction-diffusion equation with BDF-FEM

被引:11
作者
Wang, Junjun [1 ]
Shi, Dongyang [2 ]
机构
[1] Pingdingshan Univ, Sch Math & Stat, Pingdingshan, Henan, Peoples R China
[2] Zhengzhou Univ, Sch Math & Stat, Zhengzhou, Henan, Peoples R China
基金
中国国家自然科学基金;
关键词
BDF Galerkin FEM; nonlinear reaction-diffusion equation; spatial error; temporal error; unconditional superconvergent results; FINITE-ELEMENT-METHOD; CAHN-HILLIARD; ERROR ANALYSIS; GALERKIN FEMS; 2ND-ORDER; CONVERGENCE; WAVE; STABILITY;
D O I
10.1002/mma.6229
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
An implicit backward differential formula (BDF) scheme is constructed for nonlinear reaction-diffusion equation, and superconvergence results are studied with the Galerkin finite element method (FEM). The existence and uniqueness of the numerical solution are given by using of the function's monotonicity. Splitting technique is utilized to get rid of the ratio between the time step tau and the subdivision parameter h. Temporal error estimates in H-2-norm are derived, which implies the boundedness of the solutions about the time-discrete equations in H-2-norm. Unconditional spatial error estimates in L-2-norm are deduced, which help bound the numerical solutions in L-infinity-norm. The unconditional superconvergent property of u(n) in H-1-norm with order O(h(2) + tau(2)) is obtained by the relationship between the classic Ritz projection operator and the the corresponding interpolation operator. The global superconvergent property is deduced through the above results. Two numerical examples show the validity of the theoretical analysis.
引用
收藏
页码:4732 / 4743
页数:12
相关论文
共 37 条
[1]  
BAKER GA, 1982, MATH COMPUT, V39, P339, DOI 10.1090/S0025-5718-1982-0669634-0
[2]   A mathematical model for analysis of the cell cycle in cell lines derived from human tumors [J].
Basse, B ;
Baguley, BC ;
Marshall, ES ;
Joseph, WR ;
van Brunt, B ;
Wake, G ;
Wall, DJN .
JOURNAL OF MATHEMATICAL BIOLOGY, 2003, 47 (04) :295-312
[3]  
Beta C., 2003, PHYS REV E, V67, P274
[4]   Unconditional optimal error estimates for BDF2-FEM for a nonlinear Schrodinger equation [J].
Cai, Wentao ;
Li, Jian ;
Chen, Zhangxin .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2018, 331 :23-41
[5]   A second-order BDF compact difference scheme for fractional-order Volterra equation [J].
Chen, Hongbin ;
Gan, Siqing ;
Xu, Da ;
Liu, Qiwen .
INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2016, 93 (07) :1140-1154
[6]   An energy stable fourth order finite difference scheme for the Cahn-Hilliard equation [J].
Cheng, Kelong ;
Feng, Wenqiang ;
Wang, Cheng ;
Wise, Steven M. .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2019, 362 :574-595
[7]   A Second-Order, Weakly Energy-Stable Pseudo-spectral Scheme for the Cahn-Hilliard Equation and Its Solution by the Homogeneous Linear Iteration Method [J].
Cheng, Kelong ;
Wang, Cheng ;
Wise, Steven M. ;
Yue, Xingye .
JOURNAL OF SCIENTIFIC COMPUTING, 2016, 69 (03) :1083-1114
[8]   Convergence analysis and error estimates for a second order accurate finite element method for the Cahn-Hilliard-Navier-Stokes system [J].
Diegel, Amanda E. ;
Wang, Cheng ;
Wang, Xiaoming ;
Wise, Steven M. .
NUMERISCHE MATHEMATIK, 2017, 137 (03) :495-534
[9]   Stability and convergence of a second-order mixed finite element method for the Cahn-Hilliard equation [J].
Diegel, Amanda E. ;
Wang, Cheng ;
Wise, Steven M. .
IMA JOURNAL OF NUMERICAL ANALYSIS, 2016, 36 (04) :1867-1897
[10]  
FIFE PC, 1977, ARCH RATION MECH AN, V65, P335, DOI 10.1007/BF00250432