Adaptation of Quinoa (Chenopodium quinoa Willd.) to Australian Environments

被引:1
|
作者
Snowball, Richard [1 ]
Dhammu, Harmohinder S. [1 ]
D'Antuono, Mario Francesco [1 ]
Troldahl, David [2 ]
Biggs, Ian [3 ]
Thompson, Callen [4 ]
Warmington, Mark [1 ]
Pearce, Amanda [5 ]
Sharma, Darshan L. [1 ,6 ]
机构
[1] Dept Primary Ind & Reg Dev, S Perth, WA 6151, Australia
[2] Dept Primary Ind, Yanco, NSW 2703, Australia
[3] CRC Developing Northern Australia, Townsville, Qld 4810, Australia
[4] Agstarprojects, Coonabarabran, NSW 2357, Australia
[5] South Australian Res & Dev Inst, Naracoorte, SA 5271, Australia
[6] Murdoch Univ, Coll Sci Hlth Engn & Educ, Murdoch, WA 6150, Australia
来源
AGRONOMY-BASEL | 2022年 / 12卷 / 09期
关键词
quinoa; germplasm; adaptation; climate; yield; quality; GRAIN-YIELD; PHOTOPERIOD; RESPONSES; GENOTYPES; QUALITY;
D O I
10.3390/agronomy12092026
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
Quinoa is being evaluated in cropping systems in many countries outside of its natural range of South America. Very few attempts have been made by farmers or researchers to grow or evaluate quinoa under Australian environments. Given the growing popularity of quinoa with consumers, new commercial opportunities for farmers and international interest in the crop, it was timely to undertake a comprehensive evaluation of the potential of quinoa in Australia. Two advanced selections and nine germplasm lines (six of Chilean and three of Bolivian origin) identified in an earlier project were tested in 23 field trials at 14 locations on mainland Australia. Targets included irrigated sites in tropical, Mediterranean, semi-arid and desert climates, and rain-fed sites of south-western Australia with a Mediterranean climate. The field experiments were either a randomised complete block design (RBCD) or a split plot/factorial design with 2-4 replicates, and a linear mixed model was used to compare the treatment lines. Seed yield of quinoa was highest when grown in winter and spring under rain-fed conditions in Geraldton, in spring and summer under irrigation at Bool Lagoon, and summer, autumn and winter under irrigation at Leeton. The highest seed yield achieved was 3 t/ha for a germplasm line from Chile, while the highest yield for a germplasm line from Bolivia was 2.6 t/ha. Advanced selections from Australia yielded well in comparison at most trial sites. Declining seed yield was associated with mean daily temperatures during seed development increasing above 17 degrees C, mean daily temperatures during flowering declining below 15 degrees C, and rainfall during seed development under rain-fed conditions falling below 50 mm. Seed produced at Bool Lagoon was the closest in colour to white quinoa imported from Peru; however, it was more than noticeably different. Seed produced at Geraldton and Leeton was significantly larger than from other field sites; however, none were larger than 2 mm in diameter as found in Royal white quinoa from Bolivia. Superior seed colour and seed size were associated with dry conditions at maturity and cool conditions during seed development, respectively. We conclude that quinoa can become a potential crop option for Australian agriculture by exploiting genetic diversity and supplementing with suitable management practices matched to agro-climatic environments. There are reasonable prospects to raise the seed yield potential in areas in all states, especially in the regions where quinoa grew well in our experiments.
引用
收藏
页数:31
相关论文
共 50 条
  • [1] Ecdysteroids of Quinoa seeds (Chenopodium quinoa Willd.)
    Zhu, N
    Kikuzaki, H
    Vastano, BC
    Nakatani, N
    Karwe, MV
    Rosen, RT
    Ho, CT
    JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY, 2001, 49 (05) : 2576 - 2578
  • [2] The worldwide potential for quinoa (Chenopodium quinoa Willd.)
    Jacobsen, SE
    FOOD REVIEWS INTERNATIONAL, 2003, 19 (1-2) : 167 - 177
  • [3] Glycaemic properties of quinoa (Chenopodium quinoa Willd.).
    Zevallos, V.
    Grimble, G.
    Herencia, L. I.
    PROCEEDINGS OF THE NUTRITION SOCIETY, 2006, 65 : 60A - 60A
  • [4] Distribution of minerals in quinoa (Chenopodium quinoa Willd.) seeds
    Konishi, Y
    Hirano, S
    Tsuboi, H
    Wada, M
    BIOSCIENCE BIOTECHNOLOGY AND BIOCHEMISTRY, 2004, 68 (01) : 231 - 234
  • [5] Salt tolerance mechanisms in quinoa (Chenopodium quinoa Willd.)
    Adolf, Verena Isabelle
    Jacobsen, Sven-Erik
    Shabala, Sergey
    ENVIRONMENTAL AND EXPERIMENTAL BOTANY, 2013, 92 : 43 - 54
  • [6] Nutritional and health benefits of quinoa (Chenopodium quinoa Willd.)
    Navruz-Varli, Semra
    Sanlier, Nevin
    JOURNAL OF CEREAL SCIENCE, 2016, 69 : 371 - 376
  • [7] Nutritional and biological value of quinoa (Chenopodium quinoa Willd.)
    Vilcacundo, Ruben
    Hernandez-Ledesma, Blanca
    CURRENT OPINION IN FOOD SCIENCE, 2017, 14 : 1 - 6
  • [8] Evaluation of quinoa (Chenopodium quinoa Willd.) in coeliac disease
    Zevallos, V.
    Ciclitira, P. J.
    Suligoj, T.
    Herencia, L. I.
    Ellis, H. J.
    PROCEEDINGS OF THE NUTRITION SOCIETY, 2007, 66 : 69A - 69A
  • [9] Breeding quinoa (Chenopodium quinoa Willd.): potential and perspectives
    Andrés Zurita-Silva
    Francisco Fuentes
    Pablo Zamora
    Sven-Erik Jacobsen
    Andrés R. Schwember
    Molecular Breeding, 2014, 34 : 13 - 30
  • [10] Seed weight determination in quinoa (Chenopodium quinoa Willd.)
    Gomez, Maria B.
    Curti, Ramiro N.
    Bertero, Hector D.
    JOURNAL OF AGRONOMY AND CROP SCIENCE, 2022, 208 (02) : 243 - 254