Asymmetry of inverted-topology repeats in the AE1 anion exchanger suggests an elevator-like mechanism

被引:28
作者
Ficici, Emel [1 ]
Faraldo-Gomez, Jose D. [1 ]
Jennings, Michael L. [3 ]
Forrest, Lucy R. [2 ]
机构
[1] NHLBI, Theoret Mol Biophys Lab, Bldg 10, Bethesda, MD 20892 USA
[2] NINDS, Computat Struct Biol Unit, NIH, Bldg 36,Rm 4D04, Bethesda, MD 20892 USA
[3] Univ Arkansas Med Sci, Dept Physiol & Biophys, Little Rock, AR 72205 USA
基金
美国国家卫生研究院;
关键词
RENAL TUBULAR-ACIDOSIS; RED-CELL MEMBRANE; SOUTHEAST-ASIAN OVALOCYTOSIS; HUMAN-ERYTHROCYTE BAND-3; INWARD-FACING CONFORMATION; ALPHA-HELIX DIPOLE; BLOOD-CELLS; CROSS-LINKING; TRANSPORT PROTEIN; XENOPUS-OOCYTES;
D O I
10.1085/jgp.201711836
中图分类号
Q4 [生理学];
学科分类号
071003 ;
摘要
The membrane transporter anion exchanger 1 (AE1), or band 3, is a key component in the processes of carbon-dioxide transport in the blood and urinary acidification in the renal collecting duct. In both erythrocytes and the basolateral membrane of the collecting-duct alpha-intercalated cells, the role of AE1 is to catalyze a one-for-one exchange of chloride for bicarbonate. After decades of biochemical and functional studies, the structure of the transmembrane region of AE1, which catalyzes the anion-exchange reaction, has finally been determined. Each protomer of the AE1 dimer comprises two repeats with inverted transmembrane topologies, but the structures of these repeats differ. This asymmetry causes the putative substrate-binding site to be exposed only to the extracellular space, consistent with the expectation that anion exchange occurs via an alternating-access mechanism. Here, we hypothesize that the unknown, inward-facing conformation results from inversion of this asymmetry, and we propose a model of this state constructed using repeat-swap homology modeling. By comparing this inward-facing model with the outward-facing experimental structure, we predict that the mechanism of AE1 involves an elevator-like motion of the substrate-binding domain relative to the nearly stationary dimerization domain and to the membrane plane. This hypothesis is in qualitative agreement with a wide range of biochemical and functional data, which we review in detail, and suggests new avenues of experimentation.
引用
收藏
页码:1149 / 1164
页数:16
相关论文
共 101 条
[1]   Structure of eukaryotic purine/H+ symporter UapA suggests a role for homodimerization in transport activity [J].
Alguel, Yilmaz ;
Amillis, Sotiris ;
Leung, James ;
Lambrinidis, George ;
Capaldi, Stefano ;
Scull, Nicola J. ;
Craven, Gregory ;
Iwata, So ;
Armstrong, Alan ;
Mikros, Emmanuel ;
Diallinas, George ;
Cameron, Alexander D. ;
Byrne, Bernadette .
NATURE COMMUNICATIONS, 2016, 7
[2]   Crystal structure of the anion exchanger domain of human erythrocyte band 3 [J].
Arakawa, Takatoshi ;
Kobayashi-Yurugi, Takami ;
Alguel, Yilmaz ;
Iwanari, Hiroko ;
Hatae, Hinako ;
Iwata, Momi ;
Abe, Yoshito ;
Hino, Tomoya ;
Ikeda-Suno, Chiyo ;
Kuma, Hiroyuki ;
Kang, Dongchon ;
Murata, Takeshi ;
Hamakubo, Takao ;
Cameron, Alexander D. ;
Kobayashi, Takuya ;
Hamasaki, Naotaka ;
Iwata, So .
SCIENCE, 2015, 350 (6261) :680-684
[3]   Structural Model of the Anion Exchanger 1 (SLC4A1) and Identification of Transmembrane Segments Forming the Transport Site [J].
Barneaud-Rocca, Damien ;
Etchebest, Catherine ;
Guizouarn, Helene .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2013, 288 (37) :26372-26384
[4]   Genetic causes and mechanisms of distal renal tubular acidosis [J].
Batlle, Daniel ;
Haque, Syed K. .
NEPHROLOGY DIALYSIS TRANSPLANTATION, 2012, 27 (10) :3691-3704
[5]  
BENNETT V, 1985, ANNU REV BIOCHEM, V54, P273, DOI 10.1146/annurev.bi.54.070185.001421
[6]   Optimization of the Additive CHARMM All-Atom Protein Force Field Targeting Improved Sampling of the Backbone φ, ψ and Side-Chain χ1 and χ2 Dihedral Angles [J].
Best, Robert B. ;
Zhu, Xiao ;
Shim, Jihyun ;
Lopes, Pedro E. M. ;
Mittal, Jeetain ;
Feig, Michael ;
MacKerell, Alexander D., Jr. .
JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2012, 8 (09) :3257-3273
[7]   Three-Dimensional Model for the Human Cl-/HCO3- Exchanger, AE1, by Homology to the E. coli ClC Protein [J].
Bonar, Pamela ;
Schneider, Hans-Peter ;
Becker, Holger M. ;
Deitmer, Joachim W. ;
Casey, Joseph R. .
JOURNAL OF MOLECULAR BIOLOGY, 2013, 425 (14) :2591-2608
[8]   CHARMM: The Biomolecular Simulation Program [J].
Brooks, B. R. ;
Brooks, C. L., III ;
Mackerell, A. D., Jr. ;
Nilsson, L. ;
Petrella, R. J. ;
Roux, B. ;
Won, Y. ;
Archontis, G. ;
Bartels, C. ;
Boresch, S. ;
Caflisch, A. ;
Caves, L. ;
Cui, Q. ;
Dinner, A. R. ;
Feig, M. ;
Fischer, S. ;
Gao, J. ;
Hodoscek, M. ;
Im, W. ;
Kuczera, K. ;
Lazaridis, T. ;
Ma, J. ;
Ovchinnikov, V. ;
Paci, E. ;
Pastor, R. W. ;
Post, C. B. ;
Pu, J. Z. ;
Schaefer, M. ;
Tidor, B. ;
Venable, R. M. ;
Woodcock, H. L. ;
Wu, X. ;
Yang, W. ;
York, D. M. ;
Karplus, M. .
JOURNAL OF COMPUTATIONAL CHEMISTRY, 2009, 30 (10) :1545-1614
[9]   CHARMM - A PROGRAM FOR MACROMOLECULAR ENERGY, MINIMIZATION, AND DYNAMICS CALCULATIONS [J].
BROOKS, BR ;
BRUCCOLERI, RE ;
OLAFSON, BD ;
STATES, DJ ;
SWAMINATHAN, S ;
KARPLUS, M .
JOURNAL OF COMPUTATIONAL CHEMISTRY, 1983, 4 (02) :187-217
[10]  
BROSIUS FC, 1989, J BIOL CHEM, V264, P7784