Quantum mirrors of log Calabi-Yau surfaces and higher-genus curve counting

被引:13
作者
Bousseau, Pierrick [1 ,2 ]
机构
[1] Imperial Coll London, Dept Math, London SW7 2AZ, England
[2] Swiss Fed Inst Technol, Inst Theoret Studies, CH-8092 Zurich, Switzerland
基金
英国工程与自然科学研究理事会;
关键词
mirror symmetry; deformation quantization; Gromov-Witten invariants; STABLE LOGARITHMIC MAPS; DEFORMATION QUANTIZATION; GEOMETRY; VARIETIES; SYMMETRY; DUALITY; MODULI;
D O I
10.1112/S0010437X19007760
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Gross, Hacking and Keel have constructed mirrors of log Calabi-Yau surfaces in terms of counts of rational curves. Using q-deformed scattering diagrams defined in terms of higher-genus log Gromov-Witten invariants, we construct deformation quantizations of these mirrors and we produce canonical bases of the corresponding non-commutative algebras of functions.
引用
收藏
页码:360 / 411
页数:52
相关论文
共 51 条
[1]   LAGRANGIAN FIBRATIONS ON BLOWUPS OF TORIC VARIETIES AND MIRROR SYMMETRY FOR HYPERSURFACES [J].
Abouzaid, Mohammed ;
Auroux, Denis ;
Katzarkov, Ludmil .
PUBLICATIONS MATHEMATIQUES DE L IHES, 2016, 123 (01) :199-282
[2]  
Abramovich D., 2017, PREPRINT
[3]   Birational invariance in logarithmic Gromov-Witten theory [J].
Abramovich, Dan ;
Wise, Jonathan .
COMPOSITIO MATHEMATICA, 2018, 154 (03) :595-620
[4]   STABLE LOGARITHMIC MAPS TO DELIGNE-FALTINGS PAIRS II [J].
Abramovich, Dan ;
Chen, Qile .
ASIAN JOURNAL OF MATHEMATICS, 2014, 18 (03) :465-488
[5]   Topological strings and integrable hierarchies [J].
Aganagic, M ;
Dijkgraaf, R ;
Klemm, A ;
Mariño, M ;
Vafa, C .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2006, 261 (02) :451-516
[6]  
Aganagic M., 2000, PREPRINT
[7]   Complete moduli in the presence of semiabelian group action [J].
Alexeev, V .
ANNALS OF MATHEMATICS, 2002, 155 (03) :611-708
[8]   A duality map for quantum cluster varieties from surfaces [J].
Allegretti, Dylan G. L. ;
Kim, Hyun Kyu .
ADVANCES IN MATHEMATICS, 2017, 306 :1164-1208
[9]   Mirror symmetry for Del Pezzo surfaces: Vanishing cycles and coherent sheaves [J].
Auroux, Denis ;
Katzarkov, Ludmil ;
Orlov, Dmitri .
INVENTIONES MATHEMATICAE, 2006, 166 (03) :537-582
[10]  
Auroux Denis, 2007, J. Gokova Geom. Topol. GGT, V1, P51