Autotuning of a Robust Fractional Order PID Controller

被引:19
作者
De Keyser, Robin [1 ]
Muresan, Cristina I. [2 ]
Ionescu, Clara M. [1 ,2 ]
机构
[1] Univ Ghent, DySC Res Grp Dynam Syst & Control, Ghent, Belgium
[2] Tech Univ Cluj Napoca, Dept Automat, Cluj Napoca, Romania
来源
IFAC PAPERSONLINE | 2018年 / 51卷 / 25期
关键词
fractional order controllers; autotuning method; robustness; iso-damping; stability;
D O I
10.1016/j.ifacol.2018.11.181
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Fractional order PI/PD controllers are generalizations of the well-known PI/PD controllers with an extra parameter usually used to enhance the robustness of the closed loop system. In this paper, an autotuning method, referred to as the fractional order KC autotuner, is presented for tuning fractional order PI/PD controllers. The method is an extension of a previously presented autotuning principle and produces controllers, which are robust to system gain variations. Additionally, the method can also be adapted to obtain robust controllers to time delay, time constant variations, etc. The advantages of this autotuning method reside in the simplicity of the approach: 1) it requires solely one single sine test on the process; 2) it does not need the process model and 3) it eliminates the complex nonlinear equations in the traditional fractional order controller design procedure. Numerical examples are included to validate the method. (C) 2018, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved.
引用
收藏
页码:466 / 471
页数:6
相关论文
共 50 条
[31]   Robust Queen Bee Assisted Genetic Algorithm (QBGA) Optimized Fractional Order PID (FOPID) Controller for Not Necessarily Minimum Phase Power Converters [J].
Devaraj, Surya Varchasvi ;
Gunasekaran, Manavaalan ;
Sundaram, Elango ;
Venugopal, Manikandan ;
Chenniappan, Sharmeela ;
Almakhles, Dhafer J. ;
Subramaniam, Umashankar ;
Bhaskar, Mahajan Sagar .
IEEE ACCESS, 2021, 9 :93331-93337
[32]   Revisiting distributed order PID controller [J].
Rapaic, Milan R. ;
Jelicic, Zoran D. ;
Sekara, Tomislav B. ;
Malti, Rachid ;
Turkulov, Vukan ;
Radovic, Mirna N. .
FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2025, 28 (02) :505-528
[33]   Frequency Loop-Shaping and IMC-Based Integer-Order Robust PID Controller Design for Fractional-Order Processes with Time-Delay [J].
Chakraborty, Sudipta ;
Das, Dipjyoti ;
Naskar, Asim K. ;
Ghosh, Sandip .
IETE JOURNAL OF RESEARCH, 2024, 70 (10) :7820-7830
[34]   Stability Testing and IMC Based Fractional Order PID Controller Design for Heating Furnace System [J].
Sondhi, Swati ;
Hote, Yogesh V. .
2014 ANNUAL IEEE INDIA CONFERENCE (INDICON), 2014,
[35]   A Numerical Study for Plant-Independent Evaluation of Fractional-order PID Controller Performance [J].
Alagoz, Baris Baykant ;
Tepljakov, Aleksei ;
Yeroglu, Celaleddin ;
Gonzalez, Emmanuel ;
HosseinNia, S. Hassan ;
Petlenkov, Eduard .
IFAC PAPERSONLINE, 2018, 51 (04) :539-544
[36]   Fractional order PID controller for perturbed load frequency control using Kharitonov's theorem [J].
Sondhi, Swati ;
Hote, Yogesh V. .
INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS, 2016, 78 :884-896
[37]   Bode shaping-based design methods of a fractional order PID controller for uncertain systems [J].
Saidi, B. ;
Amairi, M. ;
Najar, S. ;
Aoun, M. .
NONLINEAR DYNAMICS, 2015, 80 (04) :1817-1838
[38]   Bode shaping-based design methods of a fractional order PID controller for uncertain systems [J].
B. Saidi ;
M. Amairi ;
S. Najar ;
M. Aoun .
Nonlinear Dynamics, 2015, 80 :1817-1838
[39]   A Review of Recent Developments in Autotuning Methods for Fractional-Order Controllers [J].
Muresan, Cristina I. ;
Birs, Isabela ;
Ionescu, Clara ;
Dulf, Eva H. ;
De Keyser, Robin .
FRACTAL AND FRACTIONAL, 2022, 6 (01)
[40]   Robust fixed-order dynamic output feedback controller design for fractional-order systems [J].
Badri, Pouya ;
Sojoodi, Mahdi .
IET CONTROL THEORY AND APPLICATIONS, 2018, 12 (09) :1236-1243