Stability Analysis for 2-D Discrete Systems with Varying Delay

被引:0
作者
Ye, Shuxia [1 ]
Wang, Weiqun [2 ]
Yao, Juan [1 ]
机构
[1] Nanjing Univ Sci & Technol, Sch Automat, Nanjing 210094, Peoples R China
[2] Nanjing Univ Sci & Technol, Sch Sci, Nanjing 210094, Peoples R China
来源
11TH INTERNATIONAL CONFERENCE ON CONTROL, AUTOMATION, ROBOTICS AND VISION (ICARCV 2010) | 2010年
基金
中国国家自然科学基金; 美国国家科学基金会;
关键词
stability; 2-D discrete systems; linear matrix inequalities (LMIs); TIME-SYSTEMS; FEEDBACK STABILIZABILITY; DEPENDENT STABILITY; ROBUST STABILITY; STABILIZATION;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper is concerned with stability analysis for two-dimensional (2-D) discrete systems described by the Roesser models (RM) with varying delay in the state. By utilizing the delay partitioning idea and the Lyapunov method, a new stability criteria is proposed in terms of linear matrix inequalities (LMIs). This result is delay-dependent and also dependent on the partitioning size. A numerical example is given to demonstrate the effectiveness and the benefits of the presented methods.
引用
收藏
页码:67 / 72
页数:6
相关论文
共 22 条
[1]  
[Anonymous], 2001, LECT NOTES CONTROL I
[2]   A delay-partitioning projection approach to stability analysis of continuous systems with multiple delay components [J].
Du, B. ;
Lam, J. ;
Shu, Z. ;
Wang, Z. .
IET CONTROL THEORY AND APPLICATIONS, 2009, 3 (04) :383-390
[3]   Delay-dependent output-feedback stabilisation of discrete-time systems with time-varying state delay [J].
Gao, H ;
Lam, J ;
Wang, C ;
Wang, Y .
IEE PROCEEDINGS-CONTROL THEORY AND APPLICATIONS, 2004, 151 (06) :691-698
[4]   New results on stability of discrete-time systems with time-varying state delay [J].
Gao, Huijun ;
Chen, Tongwen .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2007, 52 (02) :328-334
[5]   Parameter-dependent Lyapunov functional for stability of time-delay systems with polytopic-type uncertainties [J].
He, Y ;
Wu, M ;
She, JH ;
Liu, GP .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2004, 49 (05) :828-832
[6]   Delay-range-dependent stability for systems with time-varying delay [J].
He, Yong ;
Wang, Qing-Guo ;
Lin, Chong ;
Wu, Min .
AUTOMATICA, 2007, 43 (02) :371-376
[7]  
IZUTA G, 2006, INT CONTR AUT 2006 W, P695
[8]  
Kaczorek T., 1984, 2 DIMENSIONAL LINEAR
[9]   An algebraic approach to strong stabilizability of linear ηD MIMO systems [J].
Lin, ZP ;
Ying, JQ ;
Xu, L .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2002, 47 (09) :1510-1514
[10]  
Lin ZP, 2001, T&F S SYST CONTR, P59