Concurrent Canonical Correlation Analysis Modeling for Quality-Relevant Monitoring

被引:21
|
作者
Zhu, Qinqin [1 ]
Liu, Qiang [1 ,2 ]
Qin, S. Joe [3 ]
机构
[1] Univ Southern Calif, Mork Family Dept Chem Engn & Mat Sci, Los Angeles, CA 90089 USA
[2] Northeastern Univ, State Key Lab Synthet Automat Proc Ind, Shenyang 110819, Liaoning, Peoples R China
[3] Chinese Univ Hong Kong Shenzhen, Sch Sci & Engn, Shenzhen 518172, Guangdong, Peoples R China
来源
IFAC PAPERSONLINE | 2016年 / 49卷 / 07期
基金
中国博士后科学基金;
关键词
Concurrent Canonical Correlation Analysis (CCCA); Quality-Relevant Monitoring; PARTIAL LEAST-SQUARES; PROJECTION; DIAGNOSIS;
D O I
10.1016/j.ifacol.2016.07.340
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Canonical correlation analysis (CCA) is a well-known data analysis technique that extracts multidimensional correlation structure between two groups of variables. Due to the advantages of CCA on quality prediction, CCA-based modeling and monitoring are discussed in this paper. To overcome the shortcoming of CCA that focuses on correlation but ignores variance information, a new concurrent CCA (CCCA) modeling method is proposed to completely decompose the input and output spaces into five subspaces, to retain the CCA efficiency in predicting the output while exploiting the variance structure for process monitoring using subsequent principal component decomposition in the input and output spaces, respectively. The corresponding monitoring statistics and control limits are then developed in these subspaces. The Tennessee Eastman process is used to demonstrate the effectiveness of CCCA-based monitoring methods. (C) 2016, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved.
引用
收藏
页码:1044 / 1049
页数:6
相关论文
共 50 条
  • [1] Novel Quality-Relevant Process Monitoring based on Dynamic Locally Linear Embedding Concurrent Canonical Correlation Analysis
    Wu, Ping
    Lou, Siwei
    Zhang, Xujie
    He, Jiajun
    Gao, Jinfeng
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2020, 59 (49) : 21439 - 21457
  • [2] A Mixture of Variational Canonical Correlation Analysis for Nonlinear and Quality-Relevant Process Monitoring
    Liu, Yiqi
    Liu, Bin
    Zhao, Xiujie
    Xie, Min
    IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2018, 65 (08) : 6478 - 6486
  • [3] Quality-Relevant Fault Detection of Nonlinear Processes based on Kernel Concurrent Canonical Correlation Analysis
    Zhu, Qinqin
    Liu, Qiang
    Qin, S. Joe
    2017 AMERICAN CONTROL CONFERENCE (ACC), 2017, : 5404 - 5409
  • [4] Concurrent quality and process monitoring with canonical correlation analysis
    Zhu, Qinqin
    Liu, Qiang
    Qin, S. Joe
    JOURNAL OF PROCESS CONTROL, 2017, 60 : 95 - 103
  • [5] Quality-Relevant and Process-Relevant Fault Monitoring with Concurrent Projection to Latent Structures
    Qin, S. Joe
    Zheng, Yingying
    AICHE JOURNAL, 2013, 59 (02) : 496 - 504
  • [6] A Nonlinear Quality-relevant Process Monitoring Method with Kernel Input-output Canonical Variate Analysis
    Huang Linzhe
    Cao Yuping
    Tian Xuemin
    Deng Xiaogang
    IFAC PAPERSONLINE, 2015, 48 (08): : 611 - 616
  • [7] Quality-Relevant Process Monitoring with Concurrent Locality- Preserving Dynamic Latent Variable Method
    Zhang, Qi
    Lu, Shan
    Xie, Lei
    Chen, Aiming
    Su, Hongye
    ACS OMEGA, 2022, 7 (31): : 27249 - 27262
  • [8] Concurrent Monitoring and Diagnosis of Process and Quality Faults with Canonical Correlation Analysis
    Zhu, Qinqin
    Liu, Qiang
    Qin, S. Joe
    IFAC PAPERSONLINE, 2017, 50 (01): : 7999 - 8004
  • [9] Quality prediction and quality-relevant monitoring with multilinear PLS for batch processes
    Luo, Lijia
    Bao, Shiyi
    Mao, Jianfeng
    Tang, Di
    CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 2016, 150 : 9 - 22
  • [10] Nonlinear quality-relevant process monitoring based on maximizing correlation neural network
    Yan, Shifu
    Yan, Xuefeng
    NEURAL COMPUTING & APPLICATIONS, 2021, 33 (16) : 10129 - 10139