Cancer Diagnosis of Microscopic Biopsy Images Using a Social Spider Optimisation-Tuned Neural Network

被引:5
作者
Balaji, Prasanalakshmi [1 ]
Chidambaram, Kumarappan [2 ]
机构
[1] King Khalid Univ, Ctr Artificial Intelligence, Dept Comp Sci, Abha 62529, Saudi Arabia
[2] King Khalid Univ, Sch Pharm, Dept Pharmacol, Abha 62529, Saudi Arabia
关键词
biopsy; cancer diagnosis; predictive models; neural network; optimisation; ALGORITHM;
D O I
10.3390/diagnostics12010011
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
One of the most dangerous diseases that threaten people is cancer. If diagnosed in earlier stages, cancer, with its life-threatening consequences, has the possibility of eradication. In addition, accuracy in prediction plays a significant role. Hence, developing a reliable model that contributes much towards the medical community in the early diagnosis of biopsy images with perfect accuracy comes to the forefront. This article aims to develop better predictive models using multivariate data and high-resolution diagnostic tools in clinical cancer research. This paper proposes the social spider optimisation (SSO) algorithm-tuned neural network to classify microscopic biopsy images of cancer. The significance of the proposed model relies on the effective tuning of the weights of the neural network classifier by the SSO algorithm. The performance of the proposed strategy is analysed with performance metrics such as accuracy, sensitivity, specificity, and MCC measures, and the attained results are 95.9181%, 94.2515%, 97.125%, and 97.68%, respectively, which shows the effectiveness of the proposed method for cancer disease diagnosis.
引用
收藏
页数:11
相关论文
共 28 条
[1]  
Alheejawi S., 2019, P 2019 IEEE CAN C EL, DOI [DOI 10.1109/CCECE.2019.8861878, 10.1109/CCECE.2019.8861878]
[2]   Circulating Tumor Cells: Liquid Biopsy of Cancer [J].
Alix-Panabieres, Catherine ;
Pantel, Klaus .
CLINICAL CHEMISTRY, 2013, 59 (01) :110-118
[3]  
Arora S., 2013, International Journal of Computers and Applications, V69, P48, DOI [DOI 10.5120/11826-7528, 10.5120/11826-7528]
[4]   Artificial Bee Colony (ABC) Algorithm for Constrained Optimization Improved with Genetic Operators [J].
Bacanin, Nebojsa ;
Tuba, Milan .
STUDIES IN INFORMATICS AND CONTROL, 2012, 21 (02) :137-146
[5]  
Bhattacharjee S., 2019, APPL SCI-BASEL, V9, P2969, DOI DOI 10.3390/app9152969
[6]  
Dorigo M., 2010, Encyclopedia of Machine Learning
[7]   Predictors of first repeat biopsy cancer detection with suspected local stage prostate cancer [J].
Fowler, JE ;
Bigler, SA ;
Miles, D ;
Yalkut, DA .
JOURNAL OF UROLOGY, 2000, 163 (03) :813-818
[8]   Cuckoo search algorithm: a metaheuristic approach to solve structural optimization problems [J].
Gandomi, Amir Hossein ;
Yang, Xin-She ;
Alavi, Amir Hossein .
ENGINEERING WITH COMPUTERS, 2013, 29 (01) :17-35
[9]   Deep Learning Models for Histopathological Classification of Gastric and Colonic Epithelial Tumours [J].
Iizuka, Osamu ;
Kanavati, Fahdi ;
Kato, Kei ;
Rambeau, Michael ;
Arihiro, Koji ;
Tsuneki, Masayuki .
SCIENTIFIC REPORTS, 2020, 10 (01)
[10]   MRI-Targeted or Standard Biopsy for Prostate-Cancer Diagnosis [J].
Kasivisvanathan, V ;
Rannikko, A. S. ;
Borghi, M. ;
Panebianco, V ;
Mynderse, L. A. ;
Vaarala, M. H. ;
Briganti, A. ;
Budaus, L. ;
Hellawell, G. ;
Hindley, R. G. ;
Roobol, M. J. ;
Eggener, S. ;
Ghei, M. ;
Villers, A. ;
Bladou, F. ;
Villeirs, G. M. ;
Virdi, J. ;
Boxler, S. ;
Robert, G. ;
Singh, P. B. ;
Venderink, W. ;
Hadaschik, B. A. ;
Ruffion, A. ;
Hu, J. C. ;
Margolis, D. ;
Crouzet, S. ;
Klotz, L. ;
Taneja, S. S. ;
Pinto, P. ;
Gill, I ;
Allen, C. ;
Giganti, F. ;
Freeman, A. ;
Morris, S. ;
Punwani, S. ;
Williams, N. R. ;
Brew-Graves, C. ;
Deeks, J. ;
Takwoingi, Y. ;
Emberton, M. ;
Moore, C. M. .
NEW ENGLAND JOURNAL OF MEDICINE, 2018, 378 (19) :1767-1777