On the generalized Dirichlet problem for viscous Hamilton-Jacobi equations

被引:52
作者
Barles, G
Da Lio, F
机构
[1] Univ Tours, Fac Sci & Tech, Lab Math & Phys Theor, CNRS,UMR 6083, F-37200 Tours, France
[2] Univ Turin, Dipartimento Matemat, I-10123 Turin, Italy
来源
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES | 2004年 / 83卷 / 01期
关键词
viscous Hamilton-Jacobi equations; generalized Dirichlet problem; maximum principle; viscosity solutions; semilinear elliptic equations; geometric equations; state-constraint boundary conditions;
D O I
10.1016/S0021-7824(03)00070-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the Dirichlet problem for viscous Hamilton-Jacobi equations. Despite this type of equations seems to be uniformly elliptic, loss of boundary conditions may occur because of the strong nonlinearity of the first-order part and therefore the Dirichlet boundary condition has to be understood in the sense of viscosity solutions theory. Under natural assumptions on the initial and boundary data, we prove a Strong Comparison Result which allows us to obtain the existence and the uniqueness of a continuous solution which is defined globally in time. (C) 2003 Elsevier SAS. All rights reserved.
引用
收藏
页码:53 / 75
页数:23
相关论文
共 50 条
  • [31] Singularities of Solutions of Hamilton-Jacobi Equations
    Cannarsa, Piermarco
    Cheng, Wei
    MILAN JOURNAL OF MATHEMATICS, 2021, 89 (01) : 187 - 215
  • [32] HAMILTON-JACOBI EQUATIONS IN THE WASSERSTEIN SPACE
    Gangbo, Wilfrid
    Truyen Nguyen
    Tudorascu, Adrian
    METHODS AND APPLICATIONS OF ANALYSIS, 2008, 15 (02) : 155 - 183
  • [33] Hamilton-Jacobi equations constrained on networks
    Achdou, Yves
    Camilli, Fabio
    Cutri, Alessandra
    Tchou, Nicoletta
    NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2013, 20 (03): : 413 - 445
  • [34] Dual-Wind Discontinuous Galerkin Methods for Stationary Hamilton-Jacobi Equations and Regularized Hamilton-Jacobi Equations
    Feng, Xiaobing
    Lewis, Thomas
    Rapp, Aaron
    COMMUNICATIONS ON APPLIED MATHEMATICS AND COMPUTATION, 2022, 4 (02) : 563 - 596
  • [35] Hamilton-Jacobi Homogenization and the Isospectral Problem
    Zanelli, Lorenzo
    SYMMETRY-BASEL, 2021, 13 (07):
  • [36] A Perturbation Problem Involving Singular Perturbations of Domains for Hamilton-Jacobi Equations
    Kumagai, Taiga
    FUNKCIALAJ EKVACIOJ-SERIO INTERNACIA, 2018, 61 (03): : 377 - 427
  • [37] THE ASYMPTOTIC BOUNDS OF VISCOSITY SOLUTIONS OF THE CAUCHY PROBLEM FOR HAMILTON-JACOBI EQUATIONS
    Wang, Kaizhi
    PACIFIC JOURNAL OF MATHEMATICS, 2019, 298 (01) : 217 - 232
  • [38] Comparison principle for the Cauchy problem for Hamilton-Jacobi equations with discontinuous data
    Blanc, AP
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2001, 45 (08) : 1015 - 1037
  • [39] SYSTEMS OF CONVEX HAMILTON-JACOBI EQUATIONS WITH IMPLICIT OBSTACLES AND THE OBSTACLE PROBLEM
    Camilli, Fabio
    Loreti, Paola
    Yamada, Naoki
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2009, 8 (04) : 1291 - 1302
  • [40] Large-time behavior of unbounded solutions of viscous Hamilton-Jacobi equations in RN
    Barles, Guy
    Quaas, Alexander
    Rodriguez-Paredes, Andrei
    COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2020, 46 (03) : 547 - 572