On the generalized Dirichlet problem for viscous Hamilton-Jacobi equations

被引:52
作者
Barles, G
Da Lio, F
机构
[1] Univ Tours, Fac Sci & Tech, Lab Math & Phys Theor, CNRS,UMR 6083, F-37200 Tours, France
[2] Univ Turin, Dipartimento Matemat, I-10123 Turin, Italy
来源
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES | 2004年 / 83卷 / 01期
关键词
viscous Hamilton-Jacobi equations; generalized Dirichlet problem; maximum principle; viscosity solutions; semilinear elliptic equations; geometric equations; state-constraint boundary conditions;
D O I
10.1016/S0021-7824(03)00070-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the Dirichlet problem for viscous Hamilton-Jacobi equations. Despite this type of equations seems to be uniformly elliptic, loss of boundary conditions may occur because of the strong nonlinearity of the first-order part and therefore the Dirichlet boundary condition has to be understood in the sense of viscosity solutions theory. Under natural assumptions on the initial and boundary data, we prove a Strong Comparison Result which allows us to obtain the existence and the uniqueness of a continuous solution which is defined globally in time. (C) 2003 Elsevier SAS. All rights reserved.
引用
收藏
页码:53 / 75
页数:23
相关论文
共 50 条
  • [1] On the large time behavior of solutions of the Dirichlet problem for subquadratic viscous Hamilton-Jacobi equations
    Barles, Guy
    Porretta, Alessio
    Tchamba, Thierry Tabet
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2010, 94 (05): : 497 - 519
  • [2] GLOBAL GENERALIZED CHARACTERISTICS FOR THE DIRICHLET PROBLEM FOR HAMILTON-JACOBI EQUATIONS AT A SUPERCRITICAL ENERGY LEVEL
    Cannarsa, Piermarco
    Cheng, Wei
    Mazzola, Marco
    Wang, Kaizhi
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2019, 51 (05) : 4213 - 4244
  • [3] STOCHASTIC HOMOGENIZATION OF HAMILTON-JACOBI AND "VISCOUS"-HAMILTON-JACOBI EQUATIONS WITH CONVEX NONLINEARITIES - REVISITED
    Lions, Pierre-Louis
    Souganidis, Panagiotis E.
    COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2010, 8 (02) : 627 - 637
  • [4] Semiconcavity estimates for viscous Hamilton-Jacobi equations
    Stromberg, Thomas
    ARCHIV DER MATHEMATIK, 2010, 94 (06) : 579 - 589
  • [5] The "ergodic limit'' for a viscous Hamilton-Jacobi equation with Dirichlet conditions
    Porretta, Alessio
    RENDICONTI LINCEI-MATEMATICA E APPLICAZIONI, 2010, 21 (01) : 59 - 78
  • [6] Asymptotic solutions of viscous Hamilton-Jacobi equations with Ornstein-Uhlenbeck operator
    Fujita, Yasuhiro
    Ishii, Hitoshi
    Loreti, Paola
    COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2006, 31 (06) : 827 - 848
  • [7] Dirichlet Problems for some Hamilton-Jacobi Equations with Inequality Constraints
    Aubin, Jean-Pierre
    Bayen, Alexandre M.
    Saint-Pierre, Patrick
    PROCEEDINGS OF THE 48TH IEEE CONFERENCE ON DECISION AND CONTROL, 2009 HELD JOINTLY WITH THE 2009 28TH CHINESE CONTROL CONFERENCE (CDC/CCC 2009), 2009, : 1218 - 1222
  • [8] On ergodic control problem for viscous Hamilton-Jacobi equations for weakly coupled elliptic systems
    Arapostathis, Ari
    Biswas, Anup
    Roychowdhury, Prasun
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2022, 314 : 128 - 160
  • [9] Extinction and decay estimates for viscous Hamilton-Jacobi equations in RN
    Benachour, S
    Laurençot, P
    Schmitt, D
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2002, 130 (04) : 1103 - 1111
  • [10] The local theory for viscous Hamilton-Jacobi equations in Lebesgue spaces
    Ben-Artzi, M
    Souplet, P
    Weissler, FB
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2002, 81 (04): : 343 - 378