On the generalized Dirichlet problem for viscous Hamilton-Jacobi equations

被引:54
作者
Barles, G
Da Lio, F
机构
[1] Univ Tours, Fac Sci & Tech, Lab Math & Phys Theor, CNRS,UMR 6083, F-37200 Tours, France
[2] Univ Turin, Dipartimento Matemat, I-10123 Turin, Italy
来源
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES | 2004年 / 83卷 / 01期
关键词
viscous Hamilton-Jacobi equations; generalized Dirichlet problem; maximum principle; viscosity solutions; semilinear elliptic equations; geometric equations; state-constraint boundary conditions;
D O I
10.1016/S0021-7824(03)00070-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the Dirichlet problem for viscous Hamilton-Jacobi equations. Despite this type of equations seems to be uniformly elliptic, loss of boundary conditions may occur because of the strong nonlinearity of the first-order part and therefore the Dirichlet boundary condition has to be understood in the sense of viscosity solutions theory. Under natural assumptions on the initial and boundary data, we prove a Strong Comparison Result which allows us to obtain the existence and the uniqueness of a continuous solution which is defined globally in time. (C) 2003 Elsevier SAS. All rights reserved.
引用
收藏
页码:53 / 75
页数:23
相关论文
共 29 条
[1]   Global existence and decay for viscous Hamilton-Jacobi equations [J].
Amour, L ;
Ben-Artzi, M .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1998, 31 (5-6) :621-628
[2]  
[Anonymous], APPL MATH
[3]  
[Anonymous], 1997, Optimal control and viscosity solutions of Hamilton-Jacobi-Bellman equations
[4]   COMPARISON PRINCIPLE FOR DIRICHLET-TYPE HAMILTON-JACOBI EQUATIONS AND SINGULAR PERTURBATIONS OF DEGENERATED ELLIPTIC-EQUATIONS [J].
BARLES, G ;
PERTHAME, B .
APPLIED MATHEMATICS AND OPTIMIZATION, 1990, 21 (01) :21-44
[5]   Nonlinear Neumann boundary conditions for quasilinear degenerate elliptic equations and applications [J].
Barles, G .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1999, 154 (01) :191-224
[6]   THE DIRICHLET PROBLEM FOR SEMILINEAR 2ND-ORDER DEGENERATE ELLIPTIC-EQUATIONS AND APPLICATIONS TO STOCHASTIC EXIT TIME CONTROL-PROBLEMS [J].
BARLES, G ;
BURDEAU, J .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1995, 20 (1-2) :129-178
[7]   A strong comparison result for the Bellman equation arising in stochastic exit time control problems and its applications [J].
Barles, G ;
Rouy, E .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1998, 23 (11-12) :1995-2033
[8]  
Barles G., 1994, MATH APPL SMAI, V17
[9]  
BARLES G, IN PRESS ADV DIFFERE
[10]  
BARLES G, 1999, SYS CON FDN, P209