PbS quantum dot solids and quantum dot size gradient layers for photovoltaics

被引:1
作者
Zvaigzne, M. [1 ]
Aleksandrov, A. [2 ]
Goltyapin, Y. [1 ]
Nikitenko, V [1 ]
Chistyakov, A. [1 ]
Tameev, A. [2 ]
机构
[1] Natl Res Nucl Univ MEPhI, Moscow Engn Phys Inst, Kashirskoe Shosse 31, Moscow, Russia
[2] Russian Acad Sci, Frumkin Inst Phys Chem & Electrochem, IPCE RAS, Leninsky Prospect 31,Bld 4, Moscow 119071, Russia
来源
OPTOELECTRONIC DEVICES AND INTEGRATION VII | 2018年 / 10814卷
基金
俄罗斯基础研究基金会;
关键词
PbS; quantum dots; surface ligands; charge carriers; organic semiconductors; ELECTRICAL-PROPERTIES; OPTICAL-PROPERTIES; SURFACE LIGANDS; TRANSPORT; PHOTOCONDUCTIVITY;
D O I
10.1117/12.2502737
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Quantum dot (QD) solids are promising materials for the development of optoelectronic devices, in particular solar cells. The efficiency of such devices depends strongly on the energetic disorder within QD solid due to QD size variance and matching the energy of the components. Here, we studied optical properties, such as absorption, luminescence, time resolved luminescence spectra, and electrical conductivity of QD solid layers made of PbS QDs of different sizes (2.9 nm, 4.1 nm and 5.1 nm) as well as QD solid layers with QD size gradient. We discussed the efficiency of energy and charge transfer in layers with QD size gradient by performing theoretical estimates of the appropriate parameters. Additionally, we fabricated photovoltaic solar cells based on the QD solids and investigated an influence the energy disorder on the conductivity and the efficiency of solar cells.
引用
收藏
页数:8
相关论文
共 50 条
  • [31] Advanced Architecture for Colloidal PbS Quantum Dot Solar Cells Exploiting a CdSe Quantum Dot Buffer Layer
    Zhao, Tianshuo
    Goodwin, Earl D.
    Guo, Jiacen
    Wang, Han
    Diroll, Benjamin T.
    Murray, Christopher B.
    Kagan, Cherie R.
    ACS NANO, 2016, 10 (10) : 9267 - 9273
  • [32] Fabrication of PbS quantum dot doped TiO2 nanotubes
    Ratanatawanate, Chalita
    Xiong, Chunrong
    Balkus, Kenneth J., Jr.
    ACS NANO, 2008, 2 (08) : 1682 - 1688
  • [33] Charge Percolation Pathways Guided by Defects in Quantum Dot Solids
    Zhang, Yingjie
    Zherebetskyy, Danylo
    Bronstein, Noah D.
    Barja, Sara
    Lichtenstein, Leonid
    Schuppisser, David
    Wang, Lin-Wang
    Alivisatos, A. Paul
    Sameron, Miquel
    NANO LETTERS, 2015, 15 (05) : 3249 - 3253
  • [34] Nonmonotonic Size Dependence in the Hole Mobility of Methoxide-Stabilized PbSe Quantum Dot Solids
    Scheele, Marcus
    Engel, Jesse H.
    Ferry, Vivian E.
    Hanifi, David
    Liu, Yi
    Alivisatos, A. Paul
    ACS NANO, 2013, 7 (08) : 6774 - 6781
  • [35] PbS Colloidal Quantum Dot Photodetectors operating in the near infrared
    De Iacovo, Andrea
    Venettacci, Carlo
    Colace, Lorenzo
    Scopa, Leonardo
    Foglia, Sabrina
    SCIENTIFIC REPORTS, 2016, 6
  • [36] Integration of PbS Quantum Dot Photodiodes on Silicon for NIR Imaging
    Georgitzikis, Epimitheas
    Malinowski, Pawel E.
    Li, Yunlong
    Maes, Jorick
    Hagelsieb, Luis Moreno
    Guerrieri, Stefano
    Zeger, Hens
    Heremans, Paul
    Cheyns, David
    IEEE SENSORS JOURNAL, 2020, 20 (13) : 6841 - 6848
  • [37] Efficient Exciton Funneling in Cascaded PbS Quantum Dot Superstructures
    Xu, Fan
    Ma, Xin
    Haughn, Chelsea R.
    Benavides, Jamie
    Doty, Matthew F.
    Cloutier, Sylvain G.
    ACS NANO, 2011, 5 (12) : 9950 - 9957
  • [38] Oxygen annealing of the ZnO nanoparticle layer for the high-performance PbS colloidal quantum-dot photovoltaics
    Yang, Jonghee
    Lee, Jongtaek
    Lee, Junyoung
    Yi, Whikun
    JOURNAL OF POWER SOURCES, 2019, 421 : 124 - 131
  • [39] Electron tunneling characteristics of a cubic quantum dot, (PbS)32
    Gupta, Sanjeev K.
    He, Haiying
    Banyai, Douglas
    Kandalam, Anil K.
    Pandey, Ravindra
    JOURNAL OF CHEMICAL PHYSICS, 2013, 139 (24)
  • [40] Nongeminate radiative recombination of free charges in cation-exchanged PbS quantum dot films
    Marshall, Ashley R.
    Beard, Matthew C.
    Johnson, Justin C.
    CHEMICAL PHYSICS, 2016, 471 : 75 - 80