Percolation with multiple giant clusters

被引:15
作者
Ben-Naim, E
Krapivsky, PL
机构
[1] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA
[2] Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA
[3] Boston Univ, Dept Phys, Boston, MA 02215 USA
[4] Boston Univ, Ctr Polymer Studies, Boston, MA 02215 USA
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 2005年 / 38卷 / 23期
关键词
D O I
10.1088/0305-4470/38/23/L01
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study mean-field percolation with freezing. Specifically, we consider cluster formation via two competing processes: irreversible aggregation and freezing. We find that when the freezing rate exceeds a certain threshold, the percolation transition is suppressed. Below this threshold, the system undergoes a series of percolation transitions with multiple giant clusters ('gels') formed. Giant clusters are not self-averaging as their total number and their sizes fluctuate from realization to realization. The size distribution F-k, of frozen clusters of size k, has a universal tail, F-k similar to k(-3). We propose freezing as a practical mechanism for controlling the gel size.
引用
收藏
页码:L417 / L423
页数:7
相关论文
共 27 条
[1]  
[Anonymous], 1990, GENERATINGFUNCTIONOL
[2]   Unicyclic components in random graphs [J].
Ben-Naim, E ;
Krapivsky, PL .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2004, 37 (18) :L189-L195
[3]  
BENNAIM E, 2004, CONDMAT0408620
[4]   The scaling window of the 2-SAT transition [J].
Bollobás, B ;
Borgs, C ;
Chayes, JT ;
Kim, JH ;
Wilson, DB .
RANDOM STRUCTURES & ALGORITHMS, 2001, 18 (03) :201-256
[5]  
Broadbent S. R., 1957, P CAMBRIDGE PHIL SOC, V53, P629, DOI [DOI 10.1017/S0305004100032680, 10.1017/S0305004100032680]
[6]  
COCCO S, 2004, NEW OPTIMIZATION ALG
[7]  
Drake R., 1972, TOPICS CURRENT AER 2, V2, P201
[8]  
Flory P J., PRINCIPLES POLYM CHE
[9]   Molecular size distribution in three dimensional polymers. I. Gelation [J].
Flory, PJ .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1941, 63 :3083-3090
[10]   ON THE CRITICAL-BEHAVIOR OF THE GENERAL EPIDEMIC PROCESS AND DYNAMICAL PERCOLATION [J].
GRASSBERGER, P .
MATHEMATICAL BIOSCIENCES, 1983, 63 (02) :157-172