共 50 条
Long-term effects of neonatal treatment with fluoxetine on cognitive performance in Ts65Dn mice
被引:44
|作者:
Stagni, Fiorenza
[1
]
Giacomini, Andrea
[1
]
Guidi, Sandra
[1
]
Ciani, Elisabetta
[1
]
Ragazzi, Elena
[1
]
Filonzi, Mirco
[2
]
De Iasio, Rosaria
[2
]
Rimondini, Roberto
[3
]
Bartesaghi, Renata
[1
]
机构:
[1] Univ Bologna, Dept Biomed & Neuromotor Sci, I-40126 Bologna, Italy
[2] S Orsola Malpighi Univ Hosp, Centralized Lab, Bologna, Italy
[3] Univ Bologna, Dept Med & Surg Sci, I-40126 Bologna, Italy
关键词:
Down syndrome;
Cognitive impairment;
Pharmacotherapy;
5-HT1A receptor;
Alzheimer's disease;
SYNDROME MOUSE MODEL;
DOWN-SYNDROME MICE;
AMYLOID PRECURSOR PROTEIN;
GRANULE CELL PRECURSORS;
ALZHEIMERS-DISEASE;
BRAIN-DEVELOPMENT;
DENTATE GYRUS;
EARLY PHARMACOTHERAPY;
SYNAPTIC PLASTICITY;
5-HT1A RECEPTORS;
D O I:
10.1016/j.nbd.2014.12.005
中图分类号:
Q189 [神经科学];
学科分类号:
071006 ;
摘要:
Individuals with Down syndrome (DS), a genetic condition caused by triplication of chromosome 21, are characterized by intellectual disability and are prone to develop Alzheimer's disease (AD), due to triplication of the amyloid precursor protein (APP) gene. Recent evidence in the Ts65Dn mouse model of DS shows that enhancement of serotonergic transmission with fluoxetine during the perinatal period rescues neurogenesis, dendritic pathology and behavior, indicating that cognitive impairment can be pharmacologically restored. A crucial question is whether the short-term effects of early treatments with fluoxetine disappear at adult life stages. In the current study we found that hippocampal neurogenesis, dendritic pathology and hippocampus/amygdala-dependent memory remained in their restored state when Ts65Dn mice, which had been neonatally treated with fluoxetine, reached adulthood. Additionally, we found that the increased levels of the APP-derived beta CTF peptide in adult Ts65Dn mice were normalized following neonatal treatment with fluoxetine. This effect was accompanied by restoration of endosomal abnormalities, a beta CTF-dependent feature of DS and AD. While untreated adult Ts65Dn mice had reduced hippocampal levels of the 5-HT1A receptor (5-HT1A-R) and methyl-CpG-binding protein (MeCP2), a protein that promotes 5-HT1A-R transcription, in neonatally-treated mice both 5-HT1A-R and MeCP2 were normalized. In view of the crucial role of serotonin in brain development, these findings suggest that the enduring outcome of neonatal treatment with fluoxetine may be due to MeCP2-dependent restoration of the 5-HT1A-R. Taken together, results provide new hope for the therapy of DS, showing that early treatment with fluoxetine enduringly restores cognitive impairment and prevents early signs of AD-like pathology. (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:204 / 218
页数:15
相关论文