A Bayesian hierarchical spatio-temporal rainfall model

被引:0
|
作者
Mashford, John [1 ]
Song, Yong [2 ]
Wang, Q. J. [2 ,3 ]
Robertson, David [2 ]
机构
[1] Univ Melbourne, Sch Math & Stat, Parkville, Vic, Australia
[2] CSIRO, Div Land & Water, Clayton, Vic, Australia
[3] Univ Melbourne, Dept Infrastruct Engn, Parkville, Vic 3010, Australia
关键词
Time series; rainfall forecasting; sequential kriging; formal properties; rainfall versus elevation model; PRECIPITATION;
D O I
10.1080/02664763.2018.1473347
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
A Bayesian hierarchical spatio-temporal rainfall model is presented and analysed. The model has the ability to deal with extensive missing or null values, uses a sophisticated variance stabilising rainfall pre-transformation, incorporates a new elevation model and can provide sub-catchment rainfall estimation and interpolation using a sequential kriging scheme. The model uses a vector autoregressive stochastic process to represent the time dependence of the rainfall field and an exponential covariogram to model the spatial correlation of the rainfall field. The model can be readily generalised to other types of stochastic processes. In this paper, some results of applying the model to a particular rainfall catchment are presented.
引用
收藏
页码:217 / 229
页数:13
相关论文
共 50 条
  • [1] A Bayesian hierarchical spatio-temporal model for extreme rainfall in Extremadura (Spain)
    Garcia, J. A.
    Martin, J.
    Naranjo, L.
    Acero, F. J.
    HYDROLOGICAL SCIENCES JOURNAL-JOURNAL DES SCIENCES HYDROLOGIQUES, 2018, 63 (06): : 878 - 894
  • [2] Modelling Spatio-Temporal Variation in Sparse Rainfall Data Using a Hierarchical Bayesian Regression Model
    Sabyasachi Mukhopadhyay
    Joseph O. Ogutu
    Gundula Bartzke
    Holly T. Dublin
    Hans-Peter Piepho
    Journal of Agricultural, Biological and Environmental Statistics, 2019, 24 : 369 - 393
  • [3] Spatio-temporal Prediction of Air Quality Using Spatio-temporal Clustering and Hierarchical Bayesian Model
    Wang, Feiyun
    Hu, Yao
    Qin, Yutao
    CHIANG MAI JOURNAL OF SCIENCE, 2024, 51 (05):
  • [4] Modelling Spatio-Temporal Variation in Sparse Rainfall Data Using a Hierarchical Bayesian Regression Model
    Mukhopadhyay, Sabyasachi
    Ogutu, Joseph O.
    Bartzke, Gundula
    Dublin, Holly T.
    Piepho, Hans-Peter
    JOURNAL OF AGRICULTURAL BIOLOGICAL AND ENVIRONMENTAL STATISTICS, 2019, 24 (02) : 369 - 393
  • [5] A hierarchical Bayesian spatio-temporal model for extreme precipitation events
    Ghosh, Souparno
    Mallick, Bani K.
    ENVIRONMETRICS, 2011, 22 (02) : 192 - 204
  • [6] A Bayesian hierarchical spatio-temporal model for summer extreme temperatures in Spain
    Garcia, Jose Agustin
    Acero, Francisco Javier
    Martinez-Pizarro, Mario
    Lara, Manuel
    STOCHASTIC ENVIRONMENTAL RESEARCH AND RISK ASSESSMENT, 2024, 38 (09) : 3393 - 3410
  • [7] A Bayesian hierarchical spatio-temporal model for significant wave height in the North Atlantic
    Erik Vanem
    Arne Bang Huseby
    Bent Natvig
    Stochastic Environmental Research and Risk Assessment, 2012, 26 : 609 - 632
  • [8] A Bayesian hierarchical spatio-temporal model for significant wave height in the North Atlantic
    Vanem, Erik
    Huseby, Arne Bang
    Natvig, Bent
    STOCHASTIC ENVIRONMENTAL RESEARCH AND RISK ASSESSMENT, 2012, 26 (05) : 609 - 632
  • [9] Probabilistic Daily ILI Syndromic Surveillance with a Spatio-Temporal Bayesian Hierarchical Model
    Chan, Ta-Chien
    King, Chwan-Chuen
    Yen, Muh-Yong
    Chiang, Po-Huang
    Huang, Chao-Sheng
    Hsiao, Chuhsing K.
    PLOS ONE, 2010, 5 (07):
  • [10] A Bayesian hierarchical model for multiple imputation of urban spatio-temporal groundwater levels
    Manago, Kimberly F.
    Hogue, Terri S.
    Porter, Aaron
    Hering, Amanda S.
    STATISTICS & PROBABILITY LETTERS, 2019, 144 : 44 - 51