Thermo-mechanical properties of polyurethane modified with graphite oxide and carbon nanotube particles

被引:15
作者
Gaidukovs, S. [1 ,2 ]
Kampars, V. [1 ]
Bitenieks, J. [2 ]
Bochkov, I. [2 ]
Gaidukova, G. [1 ]
Cabulis, U. [3 ]
机构
[1] Riga Tech Univ, Inst Appied Chem, Fac Mat Sci & Appl Chem, Riga, Latvia
[2] Riga Tech Univ, Inst Polymer Mat, Fac Mat Sci & Appl Chem, Riga, Latvia
[3] Latvian State Inst Wood Chem, Polymer Lab, Riga, Latvia
关键词
Carbon nanotubes; graphite oxide; composites; properties; MECHANICAL-PROPERTIES; THERMAL-PROPERTIES; LAYERED SILICATE; COMPOSITES; NANOCOMPOSITES; METHACRYLATE); STABILITY; BEHAVIOR;
D O I
10.1080/10584587.2016.1182394
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The aim of the proposed paper is to synthesize graphite oxide (GO) and use it in combination with carbon nanotubes (CNT) for the preparation of polyurethane (PU) composites. We fabricated composites with CNT/GO content of 0.05, 0.1, 0.3wt.% with the use of ultrasonic treatment and tested their thermo-mechanical properties. Thermo-mechanical analysis (TMA) and dynamic mechanical analysis (DMA) measurements for CNT/GO composites were compared with the unfilled PU. Thermo-mechanical characteristics of storage moduli and loss moduli for CNT/GO nanocomposite were improved in comparison to the unfilled PU. The introduction of CNT/GO to the PU matrix creates strong bonding with the matrix and leads to the decrease of the glass transition temperature, new solid-solid phase transitions of polymer in the glass state. Dilatometric curves testified the remarkable changes in the glass transition of the polymer after the introduction of CNT/GO hybrid filler. Thermal expansion coefficient was calculated from the curve slopes and expressed continuously increasing expansion rate for CNT/GO composite. The measured characteristics were directly dependent from the filler content in the composite and the operated temperature.
引用
收藏
页码:1 / 11
页数:11
相关论文
共 34 条
[1]   The use of different alumina fillers for improvement of the mechanical properties of hybrid PMMA composites [J].
Alzarrug, Faisal Ali ;
Dimitrijevic, Marija M. ;
Heinemann, Radmila M. Jancic ;
Radojevic, Vesna ;
Stojanovic, Dusica B. ;
Uskokovic, Petar S. ;
Aleksic, Radoslav .
MATERIALS & DESIGN, 2015, 86 :575-581
[2]   Nanocomposites based on thermoplastic polyurethane, millable polyurethane, and organoclay: effect of organoclay content [J].
Barick, Aruna Kumar ;
Chang, Young-Wook .
HIGH PERFORMANCE POLYMERS, 2014, 26 (05) :609-617
[3]  
Bhattacharya S. N., 2008, NANOCOMPOSITES HANSE, P145
[4]  
Brinson HF., 2015, POLYM ENG SCI VISCOE, V2nd
[5]   Enhancement of Intermolecular Bonding, Thermal and Tensile Properties of Polyurethane-Urea-Silica Hybrids Films [J].
Chen, Chiou-Juy ;
Yan, Leng-Kai ;
Tsai, Yi-Shiou ;
Lu, Hsu-Tung .
POLYMER SCIENCE SERIES B, 2015, 57 (04) :370-379
[6]   Dielectric, mechanical and electro-stimulus response properties studies of polyurethane dielectric elastomer modified by carbon nanotube-graphene nanosheet hybrid fillers [J].
Chen, Tian ;
Pan, Lifeng ;
Lin, Minchao ;
Wang, Bendong ;
Liu, Lei ;
Li, Yongchao ;
Qiu, Jinhao ;
Zhu, Kongjun .
POLYMER TESTING, 2015, 47 :4-11
[7]   Rubber composites based on graphene nanoplatelets, expanded graphite, carbon nanotubes and their combination: A comparative study [J].
Das, Amit ;
Kasaliwal, Gaurav R. ;
Jurk, Rene ;
Boldt, Regine ;
Fischer, Dieter ;
Stoeckelhuber, Klaus Werner ;
Heinrich, Gert .
COMPOSITES SCIENCE AND TECHNOLOGY, 2012, 72 (16) :1961-1967
[8]   Nanoindentation in polymer nanocomposites [J].
Diez-Pascual, Ana M. ;
Gomez-Fatou, Marian A. ;
Ania, Fernando ;
Flores, Araceli .
PROGRESS IN MATERIALS SCIENCE, 2015, 67 :1-94
[9]  
Fried J. R., 1983, APPL THERMAL ANAL ST, P39
[10]   Preparation and Structural Properties of Free Filmsa from Rapeseed Oil-Based Rigid Polyurethane-Montmorillonite Nanocomposites [J].
Gaidukov, Sergey ;
Cabulis, Ugis ;
Gromilova, Karina ;
Tupureina, Velta ;
Grigalovica, Agnese .
INTERNATIONAL JOURNAL OF POLYMER SCIENCE, 2013, 2013