Diving Deep into Deep Learning: an Update on Artificial Intelligence in Retina

被引:6
作者
Goldhagen, Brian E. [1 ,2 ]
Al-khersan, Hasenin [1 ]
机构
[1] Univ Miami, Miller Sch Med, Bascom Palmer Eye Inst, Dept Ophthalmol, 900 NW 17th St, Miami, FL 33136 USA
[2] Miami Vet Adm Med Ctr, 1201 NW 16th St, Miami, FL 33125 USA
关键词
Artificial intelligence; Machine learning; Neural networks; Diabetic retinopathy; Age-related macular degeneration; Retinopathy of prematurity; POSTERIOR POLE VESSELS; DIABETIC-RETINOPATHY; MACULAR DEGENERATION; DETACHMENT SEGMENTATION; AUTOMATED DETECTION; IMAGE-ANALYSIS; QUANTIFICATION; CLASSIFICATION; PREMATURITY; PROGRESSION;
D O I
10.1007/s40135-020-00240-2
中图分类号
R77 [眼科学];
学科分类号
100212 ;
摘要
Purpose of ReviewIn the present article, we will provide an understanding and review of artificial intelligence in the subspecialty of retina and its potential applications within the specialty.Recent FindingsGiven the significant use of diagnostic imaging within retina, this subspecialty is a fitting area for the incorporation of artificial intelligence. Researchers have aimed at creating models to assist in the diagnosis and management of retinal disease as well as in the prediction of disease course and treatment response. Most of this work thus far has focused on diabetic retinopathy, age-related macular degeneration, and retinopathy of prematurity, although other retinal diseases have started to be explored as well.SummaryArtificial intelligence is well-suited to transform the practice of ophthalmology. A basic understanding of the technology is important for its effective implementation and growth.
引用
收藏
页码:121 / 128
页数:8
相关论文
共 61 条
[51]   Diabetic retinopathy: global prevalence, major risk factors, screening practices and public health challenges: a review [J].
Ting, Daniel Shu Wei ;
Cheung, Gemmy Chui Ming ;
Wong, Tien Yin .
CLINICAL AND EXPERIMENTAL OPHTHALMOLOGY, 2016, 44 (04) :260-277
[52]  
Tozer Kevin, 2015, J Endocrinol Diabetes, V2, DOI 10.15226/2374-6890/2/4/00131
[53]   Validation of automated screening for referable diabetic retinopathy with the IDx-DR device in the Hoorn Diabetes Care System [J].
van der Heijden, Amber A. ;
Abramoff, Michael D. ;
Verbraak, Frank ;
van Hecke, Manon V. ;
Liem, Albert ;
Nijpels, Giel .
ACTA OPHTHALMOLOGICA, 2018, 96 (01) :63-68
[54]   Automatic Drusen Quantification and Risk Assessment of Age-Related Macular Degeneration on Color Fundus Images [J].
van Grinsven, Mark J. J. P. ;
Lechanteur, Yara T. E. ;
van de Ven, Johannes P. H. ;
van Ginneken, Bram ;
Hoyng, Carel B. ;
Theelen, Thomas ;
Sanchez, Clara I. .
INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2013, 54 (04) :3019-3027
[55]   Diagnostic Accuracy of a Device for the Automated Detection of Diabetic Retinopathy in a Primary Care Setting [J].
Verbraak, Frank D. ;
Abramoff, Michael D. ;
Bausch, Gonny C. F. ;
Klaver, Caroline ;
Nijpels, Giel ;
Schlingemann, Reinier O. ;
van der Heijden, Amber A. .
DIABETES CARE, 2019, 42 (04) :651-656
[56]   Deep learning in biomedicine [J].
Wainberg, Michael ;
Merico, Daniele ;
Delong, Andrew ;
Frey, Brendan J. .
NATURE BIOTECHNOLOGY, 2018, 36 (09) :829-838
[57]   Automated retinopathy of prematurity screening using deep neural networks [J].
Wang, Jianyong ;
Ju, Rong ;
Chen, Yuanyuan ;
Zhang, Lei ;
Hu, Junjie ;
Wu, Yu ;
Dong, Wentao ;
Zhong, Jie ;
Yi, Zhang .
EBIOMEDICINE, 2018, 35 :361-368
[58]   Do no harm: a roadmap for responsible machine learning for health care [J].
Wiens, Jenna ;
Saria, Suchi ;
Sendak, Mark ;
Ghassemi, Marzyeh ;
Liu, Vincent X. ;
Doshi-Velez, Finale ;
Jung, Kenneth ;
Heller, Katherine ;
Kale, David ;
Saeed, Mohammed ;
Ossorio, Pilar N. ;
Thadaney-Israni, Sonoo ;
Goldenberg, Anna .
NATURE MEDICINE, 2019, 25 (09) :1337-1340
[59]   Artificial Intelligence With Deep Learning Technology Looks Into Diabetic Retinopathy Screening [J].
Wong, Tien Yin ;
Bressler, Neil M. .
JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, 2016, 316 (22) :2366-2367
[60]   Dual-stage deep learning framework for pigment epithelium detachment segmentation in polypoidal choroidal vasculopathy [J].
Xu, Yupeng ;
Yan, Ke ;
Kim, Jinman ;
Wang, Xiuying ;
Li, Changyang ;
Su, Li ;
Yu, Suqin ;
Xu, Xun ;
Feng, Dagan David .
BIOMEDICAL OPTICS EXPRESS, 2017, 8 (09) :4061-4076