Cost-Effective Quasi-Parallel Sensing Instrumentation for Industrial Chemical Species Tomography

被引:30
作者
Enemali, Godwin [1 ]
Zhang, Rui [1 ]
McCann, Hugh [1 ]
Liu, Chang [1 ]
机构
[1] Univ Edinburgh, Sch Engn, Edinburgh EH9 3JL, Midlothian, Scotland
基金
英国工程与自然科学研究理事会; 欧盟地平线“2020”;
关键词
Laser beams; Measurement by laser beam; Modulation; Tomography; Multiplexing; Frequency modulation; Laser noise; Chemical species tomography (CST); data acquisition (DAQ); digital lock-in (DLI); instrumentation; quasi-parallel; wavelength modulation spectroscopy (WMS); WAVELENGTH-MODULATION SPECTROSCOPY; SYSTEM; TEMPERATURE;
D O I
10.1109/TIE.2021.3063963
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Chemical species tomography (CST) has been widely applied for the imaging of critical gas-phase parameters in industrial processes. To acquire high-fidelity images, CST is typically implemented by the line-of-sight wavelength modulation spectroscopy measurements from multiple laser beams. In this article, we present a novel quasi-parallel sensing technique and electronic circuits for industrial CST. Although the acquisition and processing of these multiple beams using a fully parallel data acquisition and signal processing system can achieve maximized temporal response in CST, it leads to a highly complex and power-consuming instrumentation with electronics-caused inconsistency between the sampled beams, in addition to a significant burden on data transfer infrastructure. To address these issues, the digitization and demodulation of the multibeam signals in the proposed quasi-parallel sensing technique are multiplexed over the high-frequency modulation within a wavelength scan. Our development not only maintains the temporal response of the fully parallel sensing scheme but also facilitates the cost-effective implementation of industrial CST with very low complexity and reduced load on data transfer compared with the fully parallel sensing technique. The proposed technique was analytically proofed and then numerically examined by noise-contaminated CST simulations. Finally, the designed electronics was experimentally validated using a lab-scale CST system with 32 laser beams.
引用
收藏
页码:2107 / 2116
页数:10
相关论文
共 33 条
[1]   Relative Entropy Regularized TDLAS Tomography for Robust Temperature Imaging [J].
Bao, Yong ;
Zhang, Rui ;
Enemali, Godwin ;
Cao, Zhang ;
Zhou, Bin ;
McCann, Hugh ;
Liu, Chang .
IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2021, 70
[2]   Measurement of CO2 Concentration and Temperature in an Aero Engine Exhaust Plume Using Wavelength Modulation Spectroscopy [J].
Benoy, Thomas ;
Wilson, David ;
Lengden, Michael ;
Armstrong, Ian ;
Stewart, George ;
Johnstone, Walter .
IEEE SENSORS JOURNAL, 2017, 17 (19) :6409-6417
[3]   MUSIC-Like Algorithm for Source Localization in Electrical Impedance Tomography [J].
Borijindargoon, Narong ;
Ng, Boon Poh ;
Rahardja, Susanto .
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2019, 66 (06) :4661-4671
[4]  
Chighine Andrea, 2015, 2015 IEEE Sensors. Proceedings, P1, DOI 10.1109/ICSENS.2015.7370677
[5]   Applications of laser diagnostics to thermal power plants and engines [J].
Deguchi, Y. ;
Kamimoto, T. ;
Wang, Z. Z. ;
Yan, J. J. ;
Liu, J. P. ;
Watanabe, H. ;
Kurose, R. .
APPLIED THERMAL ENGINEERING, 2014, 73 (02) :1453-1464
[6]  
ENEMALI G, 2019, PROC IEEE INT C IMAG, P1
[7]   A Custom, High-Channel Count Data Acquisition System for Chemical Species Tomography of Aero-Jet Engine Exhaust Plumes [J].
Fisher, Edward M. D. ;
Tsekenis, Stylianos-Alexios ;
Yang, Yunjie ;
Chighine, A. ;
Liu, Chang ;
Polydorides, Nick ;
Wright, P. ;
Kliment, J. ;
Ozanyan, K. ;
Benoy, Thomas ;
Humphries, Gordon ;
Wilson, David ;
Lengden, M. ;
Johnstone, Walter ;
McCann, Hugh .
IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2020, 69 (02) :549-558
[8]   Infrared laser-absorption sensing for combustion gases [J].
Goldenstein, Christopher S. ;
Spearrin, R. Mitchell ;
Jeffries, Jay B. ;
Hanson, Ronald K. .
PROGRESS IN ENERGY AND COMBUSTION SCIENCE, 2017, 60 :132-176
[9]   Fitting of calibration-free scanned-wavelength-modulation spectroscopy spectra for determination of gas properties and absorption lineshapes [J].
Goldenstein, Christopher S. ;
Strand, Christopher L. ;
Schultz, Ian A. ;
Sun, Kai ;
Jeffries, Jay B. ;
Hanson, Ronald K. .
APPLIED OPTICS, 2014, 53 (03) :356-367
[10]   The HITRAN2016 molecular spectroscopic database [J].
Gordon, I. E. ;
Rothman, L. S. ;
Hill, C. ;
Kochanov, R. V. ;
Tan, Y. ;
Bernath, P. F. ;
Birk, M. ;
Boudon, V. ;
Campargue, A. ;
Chance, K. V. ;
Drouin, B. J. ;
Flaud, J. -M. ;
Gamache, R. R. ;
Hodges, J. T. ;
Jacquemart, D. ;
Perevalov, V. I. ;
Perrin, A. ;
Shine, K. P. ;
Smith, M. -A. H. ;
Tennyson, J. ;
Toon, G. C. ;
Tran, H. ;
Tyuterev, V. G. ;
Barbe, A. ;
Csaszar, A. G. ;
Devi, V. M. ;
Furtenbacher, T. ;
Harrison, J. J. ;
Hartmann, J. -M. ;
Jolly, A. ;
Johnson, T. J. ;
Karman, T. ;
Kleiner, I. ;
Kyuberis, A. A. ;
Loos, J. ;
Lyulin, O. M. ;
Massie, S. T. ;
Mikhailenko, S. N. ;
Moazzen-Ahmadi, N. ;
Mueller, H. S. P. ;
Naumenko, O. V. ;
Nikitin, A. V. ;
Polyansky, O. L. ;
Rey, M. ;
Rotger, M. ;
Sharpe, S. W. ;
Sung, K. ;
Starikova, E. ;
Tashkun, S. A. ;
Vander Auwera, J. .
JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER, 2017, 203 :3-69