Recent Advance in Light-controlled CRISPR Technology

被引:1
作者
Liu Hong [1 ]
Jiang Jinghong [2 ]
Duan Zhijuan [1 ]
Xu Shijun [1 ]
Huang Fujian [1 ]
Xia Fan [1 ]
机构
[1] China Univ Geosci, Fac Mat Sci & Chem, Wuhan 430074, Peoples R China
[2] Wuhan Univ, Zhongnan Hosp, Obstet & Gynecol Dept, Wuhan 430071, Peoples R China
来源
CHEMICAL JOURNAL OF CHINESE UNIVERSITIES-CHINESE | 2021年 / 42卷 / 11期
基金
中国国家自然科学基金;
关键词
Photoswitching; Photocaging; CRISPR-Cas system; Genome editing; TARGET DNA; SPATIOTEMPORAL CONTROL; PROTEIN INTERACTIONS; GENE-EXPRESSION; OPTICAL CONTROL; ACTIVATION; CELLS; NUCLEASES; TRANSCRIPTION; PHOTOCONTROL;
D O I
10.7503/cjcu20210420
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The CRISPR-Cas system provides a versatile tool for programmable genome editing. The collision of CRISPR with optogenetics and photochemical biology has produced a brilliant spark. The photoactivated CRISPR-Cas system enables better spatial and temporal regulation of RNA-guided nuclease activity. In recent years, scientists have developed a range of light-activated CRISPR tools using a combination of CRISPR and a variety of optical techniques. These tools allow researchers to conduct high-resolution studies of life activities in spatial, temporal and genomic coordinates. In this review, research progress of the CRISPR system, gene editing technology, optogenetics and photochemical biology are briefly summarized, and the development of light-induced CRISPR technology is prospected.
引用
收藏
页码:3321 / 3333
页数:13
相关论文
共 108 条
  • [1] RNA targeting with CRISPR-Cas13
    Abudayyeh, Omar O.
    Gootenberg, Jonathan S.
    Essletzbichler, Patrick
    Han, Shuo
    Joung, Julia
    Belanto, Joseph J.
    Verdine, Vanessa
    Cox, David B. T.
    Kellner, Max J.
    Regev, Aviv
    Lander, Eric S.
    Voytas, Daniel F.
    Ting, Alice Y.
    Zhang, Feng
    [J]. NATURE, 2017, 550 (7675) : 280 - +
  • [2] The power of light: photosensitive tools for chemical biology
    Ahmed, Ishtiaq
    Fruk, Ljiljana
    [J]. MOLECULAR BIOSYSTEMS, 2013, 9 (04) : 565 - 570
  • [3] Spatial and Temporal Control of CRISPR-Cas9-Mediated Gene Editing Delivered via a Light-Triggered Liposome System
    Aksoy, Yagiz Alp
    Yang, Biyao
    Chen, Wenjie
    Hung, Tzongtyng
    Kuchel, Rhiannon P.
    Zammit, Nathan W.
    Grey, Shane T.
    Goldys, Ewa M.
    Deng, Wei
    [J]. ACS APPLIED MATERIALS & INTERFACES, 2020, 12 (47) : 52433 - 52444
  • [4] CRISPR-Cas adaptation: insights into the mechanism of action
    Amitai, Gil
    Sorek, Rotem
    [J]. NATURE REVIEWS MICROBIOLOGY, 2016, 14 (02) : 67 - 76
  • [5] Genome editing with CRISPR-Cas nucleases, base editors, transposases and prime editors
    Anzalone, Andrew V.
    Koblan, Luke W.
    Liu, David R.
    [J]. NATURE BIOTECHNOLOGY, 2020, 38 (07) : 824 - 844
  • [6] Photocontrol of Tyrosine Phosphorylation in Mammalian Cells via Genetic Encoding of Photocaged Tyrosine
    Arbely, Eyal
    Torres-Kolbus, Jessica
    Deiters, Alexander
    Chin, Jason W.
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2012, 134 (29) : 11912 - 11915
  • [7] Optical Control of Protein Function through Unnatural Amino Acid Mutagenesis and Other Optogenetic Approaches
    Baker, Austin S.
    Deiters, Alexander
    [J]. ACS CHEMICAL BIOLOGY, 2014, 9 (07) : 1398 - 1407
  • [8] Conditional gene knockdowns in sea urchins using caged morpholinos
    Bardhan, Anirban
    Deiters, Alexander
    Ettensohn, Charles A.
    [J]. DEVELOPMENTAL BIOLOGY, 2021, 475 : 21 - 29
  • [9] A glance at genome editing with CRISPR-Cas9 technology
    Barman, Antara
    Deb, Bornali
    Chakraborty, Supriyo
    [J]. CURRENT GENETICS, 2020, 66 (03) : 447 - 462
  • [10] Mimicking Adhesion in Minimal Synthetic Cells
    Bartelt, Solveig M.
    Chervyachkova, Elizaveta
    Ricken, Julia
    Wegner, Seraphine, V
    [J]. ADVANCED BIOSYSTEMS, 2019, 3 (06)