Multisource Heterogeneous Unsupervised Domain Adaptation via Fuzzy Relation Neural Networks

被引:91
|
作者
Liu, Feng [1 ]
Zhang, Guangquan [1 ]
Lu, Jie [1 ]
机构
[1] Univ Technol Sydney, Fac Engn & Informat Technol, Australian Artificial Intelligence Inst, Sydney, NSW 2007, Australia
基金
澳大利亚研究理事会;
关键词
Classification; domain adaptation; machine learning; transfer learning; PLANE GEOMETRY; SIMILARITY; REGRESSION; SYSTEM; MODEL;
D O I
10.1109/TFUZZ.2020.3018191
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In unsupervised domain adaptation (UDA), a classifier for a target domain is trained with labeled source data and unlabeled target data. Existing UDA methods assume that the source data come from the same source domain (i.e., single-source scenario) or from multiple source domains, whose feature spaces have the same dimension (homogeneous) but different distributions (i.e., multihomogeneous-source scenario). However, in the real world, for a specific target domain, we probably have multiple different-dimension (heterogeneous) source domains, which do not satisfy the assumption of existing UDA methods. To remove this assumption and move forward to a realistic UDA problem, this article presents a shared-fuzzy-equivalence-relation neural network (SFERNN) for addressing the multisource heterogeneous UDA problem. The SFERNN is a five-layer neural network containing c source branches and one target branch. The network structure of the SFERNN is first confirmed by a novel fuzzy relation called multisource shared fuzzy equivalence relation. Then, we optimize parameters of the SFERNN via minimizing cross-entropy loss on c source branches and the distributional discrepancy between each source branch and the target branch. Experiments distributed across eight real-world datasets are conducted to validate the SFERNN. This testing regime demonstrates that the SFERNN outperforms the existing single-source heterogeneous UDA methods, especially when the target domain contains few data.
引用
收藏
页码:3308 / 3322
页数:15
相关论文
共 50 条
  • [31] Unsupervised domain adaptation for activity recognition across heterogeneous datasets
    Sanabria, Andrea Rosales
    Ye, Juan
    PERVASIVE AND MOBILE COMPUTING, 2020, 64
  • [32] Unsupervised Personal Thermal Comfort Prediction via Adversarial Domain Adaptation
    Das, Hari Prasanna
    Schiavon, Stefano
    Spanos, Costas J.
    BUILDSYS'21: PROCEEDINGS OF THE 2021 ACM INTERNATIONAL CONFERENCE ON SYSTEMS FOR ENERGY-EFFICIENT BUILT ENVIRONMENTS, 2021, : 230 - 231
  • [33] Learning from streaming data with unsupervised heterogeneous domain adaptation
    Moradi, Mona
    Rahmanimanesh, Mohammad
    Shahzadi, Ali
    INTERNATIONAL JOURNAL OF DATA SCIENCE AND ANALYTICS, 2025, 19 (01) : 61 - 81
  • [34] Unsupervised domain adaptation with structural attribute learning networks
    Li, Yuze
    Yang, Chunling
    Chen, Yu
    Zhang, Yan
    NEUROCOMPUTING, 2020, 415 : 96 - 105
  • [35] Unsupervised Domain Adaptation With Adversarial Residual Transform Networks
    Cai, Guanyu
    Wang, Yuqin
    He, Lianghua
    Zhou, MengChu
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2020, 31 (08) : 3073 - 3086
  • [36] Unsupervised domain adaptation via optimal prototypes transport
    Xu, Xiao-Lin
    Ren, Chuan-Xian
    Yan, Hong
    EXPERT SYSTEMS WITH APPLICATIONS, 2025, 272
  • [37] Unsupervised Domain Adaptation via Stacked Convolutional Autoencoder
    Zhu, Yi
    Zhou, Xinke
    Wu, Xindong
    APPLIED SCIENCES-BASEL, 2023, 13 (01):
  • [38] Unsupervised Domain Adaptation via Discriminative Manifold Propagation
    Luo, You-Wei
    Ren, Chuan-Xian
    Dai, Dao-Qing
    Yan, Hong
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2022, 44 (03) : 1653 - 1669
  • [39] Unsupervised urban scene segmentation via domain adaptation
    Gao, Lianli
    Zhang, Yiyue
    Zou, Fuhao
    Shao, Jie
    Lai, Junyu
    NEUROCOMPUTING, 2020, 406 : 295 - 301
  • [40] Domain adaptation and weight initialization of neural networks for diagnosing interstitial lung diseases
    Thorat, Onkar
    Salvi, Siddharth
    Dedhia, Shrey
    Bhadane, Chetashri
    Dongre, Deepika
    INTERNATIONAL JOURNAL OF IMAGING SYSTEMS AND TECHNOLOGY, 2022, 32 (05) : 1535 - 1547