A class large solution of the 3D Hall-magnetohydrodynamic equations

被引:15
|
作者
Li, Jinlu [1 ,3 ]
Yu, Yanghai [2 ]
Zhu, Weipeng [1 ]
机构
[1] Guangzhou Univ, Sch Math & Informat Sci, Guangzhou 510006, Peoples R China
[2] Anhui Normal Univ, Sch Math & Stat, Wuhu 241002, Anhui, Peoples R China
[3] Gannan Normal Univ, Sch Math & Comp Sci, Ganzhou 341000, Peoples R China
基金
中国国家自然科学基金;
关键词
Hall-MHD system; Global existence; Large initial data; GLOBAL EXISTENCE; MHD EQUATIONS; WELL-POSEDNESS; CRITERION; DECAY;
D O I
10.1016/j.jde.2019.11.020
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we construct the global large solution to the three-dimensional incompressible Hall-MHD equations with a class of initial data. Here the "large solution" means that the L-infinity norm can be arbitrarily large initially. (C) 2019 Elsevier Inc. All rights reserved.
引用
收藏
页码:5811 / 5822
页数:12
相关论文
共 50 条
  • [21] ON PARTIAL REGULARITY FOR THE 3D NONSTATIONARY HALL MAGNETOHYDRODYNAMICS EQUATIONS ON THE PLANE
    Chae, Dongho
    Wolf, Joerg
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2016, 48 (01) : 443 - 469
  • [22] UNIQUENESS AND TIME DECAY RATE OF WEAK SOLUTION TO THE 3D VOIGT-REGULARIZED MAGNETOHYDRODYNAMIC EQUATIONS
    Zhang, Xiaoting
    Yang, Rong
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2024,
  • [23] The 3D incompressible Hall magneto-hydrodynamics equations with partial hyperdissipation
    Yuan, Baoquan
    Li, Chaoying
    APPLIED MATHEMATICS AND COMPUTATION, 2019, 359 : 308 - 332
  • [24] Logarithmically improved regularity criterion for the 3D Hall-MHD equations
    Gala, Sadek
    Thera, Michel
    COMPUTATIONAL & APPLIED MATHEMATICS, 2021, 40 (07):
  • [25] GLOBAL REGULARITY FOR 3D GENERALIZED HALL MAGNETO-HYDRODYNAMICS EQUATIONS
    Yuan, Baoquan
    Li, Chaoying
    JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2018, 8 (04): : 1143 - 1158
  • [26] On regularity criteria for the 3D Hall-MHD equations in terms of the velocity
    He, Fangyi
    Ahmad, Bashir
    Hayat, Tasawar
    Zhou, Yong
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2016, 32 : 35 - 51
  • [27] Global Existence and Asymptotic Stability of 3D Generalized Magnetohydrodynamic Equations
    Jiang, Kerui
    Liu, Zuhan
    Zhou, Ling
    JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2020, 22 (01)
  • [28] Global existence and asymptotic behavior for the 3D generalized Hall-MHD system
    Wu, Xing
    Yu, Yanghai
    Tang, Yanbin
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2017, 151 : 41 - 50
  • [29] Global Axisymmetric Solutions to the 3D MHD Equations with Nonzero Swirl
    Wang, Peng
    Guo, Zhengguang
    JOURNAL OF GEOMETRIC ANALYSIS, 2022, 32 (10)
  • [30] Global existence of 3D rotating magnetohydrodynamic equations arising from Earth's fluid core
    Sun, Jinyi
    Wang, Weining
    Zhao, Dandan
    NETWORKS AND HETEROGENEOUS MEDIA, 2025, 20 (01) : 35 - 51