A class large solution of the 3D Hall-magnetohydrodynamic equations

被引:15
|
作者
Li, Jinlu [1 ,3 ]
Yu, Yanghai [2 ]
Zhu, Weipeng [1 ]
机构
[1] Guangzhou Univ, Sch Math & Informat Sci, Guangzhou 510006, Peoples R China
[2] Anhui Normal Univ, Sch Math & Stat, Wuhu 241002, Anhui, Peoples R China
[3] Gannan Normal Univ, Sch Math & Comp Sci, Ganzhou 341000, Peoples R China
基金
中国国家自然科学基金;
关键词
Hall-MHD system; Global existence; Large initial data; GLOBAL EXISTENCE; MHD EQUATIONS; WELL-POSEDNESS; CRITERION; DECAY;
D O I
10.1016/j.jde.2019.11.020
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we construct the global large solution to the three-dimensional incompressible Hall-MHD equations with a class of initial data. Here the "large solution" means that the L-infinity norm can be arbitrarily large initially. (C) 2019 Elsevier Inc. All rights reserved.
引用
收藏
页码:5811 / 5822
页数:12
相关论文
共 50 条
  • [1] Global smooth solutions to the 3D generalized Hall-magnetohydrodynamic equations with large data
    Wu, Xing
    Li, Jinlu
    APPLICABLE ANALYSIS, 2023, 102 (02) : 542 - 551
  • [2] Regularity criterion for the 3D Hall-magnetohydrodynamic equations involving the vorticity
    Ye, Zhuan
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2016, 144 : 182 - 193
  • [3] A free boundary problem for planar compressible Hall-magnetohydrodynamic equations
    Tao, Qiang
    Yang, Ying
    Gao, Jincheng
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2018, 69 (01):
  • [4] Regularity criteria for the incompressible Hall-magnetohydrodynamic equations
    Fan, Jishan
    Li, Fucai
    Nakamura, Gen
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2014, 109 : 173 - 179
  • [5] Regularity of the 3D Stationary Hall Magnetohydrodynamic Equations on the Plane
    Chae, Dongho
    Wolf, Joerg
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2017, 354 (01) : 213 - 230
  • [6] Zero Mach number limit of the compressible Hall-magnetohydrodynamic equations
    Mu, Yanmin
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2016, 67 (01): : 1 - 13
  • [7] On the temporal decay for the Hall-magnetohydrodynamic equations
    Chae, Dongho
    Schonbek, Maria
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2013, 255 (11) : 3971 - 3982
  • [8] Global Well-Posedness for the 3D Incompressible Hall-Magnetohydrodynamic Equations with Fujita-Kato Type Initial Data
    Wan, Renhui
    Zhou, Yong
    JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2019, 21 (01)
  • [9] Global existence and temporal decay for the 3D compressible Hall-magnetohydrodynamic system
    Xu, Fuyi
    Zhang, Xinguang
    Wu, Yonghong
    Liu, Lishan
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2016, 438 (01) : 285 - 310
  • [10] A Class of Large Solutions to the 3D Generalized Hall-MHD Equations
    Wu, Xing
    Tang, Yanbin
    ACTA APPLICANDAE MATHEMATICAE, 2020, 169 (01) : 681 - 690