Activity of Cu-Al-Oxo Extra-Framework Clusters for Selective Methane Oxidation on Cu-Exchanged Zeolites

被引:31
作者
Lee, Insu [1 ,2 ]
Lee, Mal-Soon [3 ]
Tao, Lei [1 ,2 ]
Ikuno, Takaaki [1 ,2 ]
Khare, Rachit [1 ,2 ]
Jentys, Andreas [1 ,2 ]
Huthwelker, Thomas [4 ]
Borca, Camelia N. [4 ]
Kalinko, Aleksandr [5 ]
Gutierrez, Oliver Y. [3 ]
Govind, Niri [6 ]
Fulton, John L. [3 ]
Hu, Jian Zhi [3 ]
Glezakou, Vassiliki-Alexandra [3 ]
Rousseau, Roger [3 ]
Sanchez-Sanchez, Maricruz [1 ,2 ]
Lercher, Johannes A. [1 ,2 ,3 ]
机构
[1] Tech Univ Munich, Dept Chem, D-85748 Garching, Germany
[2] Tech Univ Munich, Catalysis Res Ctr, D-85748 Garching, Germany
[3] Pacific Northwest Natl Lab, Inst Integrated Catalysis, Richland, WA 99354 USA
[4] Swiss Light Source, Lab Synchrotron Radiat & Femtochem LSF, CH-5232 Villigen, Switzerland
[5] Photon Sci DESY, D-22607 Hamburg, Germany
[6] Pacific Northwest Natl Lab, Phys Sci Div, Richland, WA 99354 USA
来源
JACS AU | 2021年 / 1卷 / 09期
关键词
Methane oxidation; Cu L-3-edge XANES; HERFD; TDDFT; zeolite; AIMD; RAY-ABSORPTION SPECTROSCOPY; BRONSTED ACID SITES; LOCAL ENVIRONMENT; DIRECT CONVERSION; MORDENITE; ALUMINUM; ZSM-5; EDGE; DEALUMINATION; XAS;
D O I
10.1021/jacsau.1c00196
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Cu-zeolites are able to directly convert methane to methanol via a three-step process using O-2 as oxidant. Among the different zeolite topologies, Cu-exchanged mordenite (MOR) shows the highest methanol yields, attributed to a preferential formation of active Cu-oxo species in its 8-MR pores. The presence of extra-framework or partially detached Al species entrained in the micropores of MOR leads to the formation of nearly homotopic redox active Cu-Al-oxo nanoclusters with the ability to activate CH4. Studies of the activity of these sites together with characterization by Al-27 NMR and IR spectroscopy leads to the conclusion that the active species are located in the 8-MR side pockets of MOR, and it consists of two Cu ions and one Al linked by O. This Cu-Al-oxo cluster shows an activity per Cu in methane oxidation significantly higher than of any previously reported active Cu-oxo species. In order to determine unambiguously the structure of the active Cu-Al-oxo cluster, we combine experimental XANES of Cu K- and L-edges, Cu K-edge HERFD-XANES, and Cu K-edge EXAFS with TDDFT and AIMD-assisted simulations. Our results provide evidence of a [Cu2AlO3](2+) cluster exchanged on MOR Al pairs that is able to oxidize up to two methane molecules per cluster at ambient pressure.
引用
收藏
页码:1412 / 1421
页数:10
相关论文
共 68 条
[1]   In Situ XAS and XRPD Parametric Rietveld Refinement To Understand Dealumination of Y Zeolite Catalyst [J].
Agostini, Giovanni ;
Lamberti, Carlo ;
Palin, Luca ;
Milanesio, Marco ;
Danilina, Nadiya ;
Xu, Bin ;
Janousch, Markus ;
van Bokhoven, Jeroen A. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2010, 132 (02) :667-678
[2]   Bis(μ-oxo) versus mono(μ-oxo)dicopper cores in a zeolite for converting methane to methanol: an in situ XAS and DFT investigation [J].
Alayon, Evalyn Mae C. ;
Nachtegaal, Maarten ;
Bodi, Andras ;
Ranocchiari, Marco ;
van Bokhoven, Jeroen A. .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2015, 17 (12) :7681-7693
[3]   Reaction Conditions of Methane-to-Methanol Conversion Affect the Structure of Active Copper Sites [J].
Alayon, Evalyn Mae C. ;
Nachtegaal, Maarten ;
Bodi, Andras ;
van Bokhoven, Jeroen A. .
ACS CATALYSIS, 2014, 4 (01) :16-22
[4]   Determination of the electronic and geometric structure of Cu sites during methane conversion over Cu-MOR with X-ray absorption spectroscopy [J].
Alayon, Evalyn Mae C. ;
Nachtegaal, Maarten ;
Kleymenov, Evgeny ;
van Bokhoven, Jeroen A. .
MICROPOROUS AND MESOPOROUS MATERIALS, 2013, 166 :131-136
[5]   Direct methane conversion routes to chemicals and fuels [J].
Alvarez-Galvan, M. C. ;
Mota, N. ;
Ojeda, M. ;
Rojas, S. ;
Navarro, R. M. ;
Fierro, J. L. G. .
CATALYSIS TODAY, 2011, 171 (01) :15-23
[6]   Real-space multiple-scattering calculation and interpretation of x-ray-absorption near-edge structure [J].
Ankudinov, AL ;
Ravel, B ;
Rehr, JJ ;
Conradson, SD .
PHYSICAL REVIEW B, 1998, 58 (12) :7565-7576
[7]   NWChem: Past, present, and future [J].
Apra, E. ;
Bylaska, E. J. ;
de Jong, W. A. ;
Govind, N. ;
Kowalski, K. ;
Straatsma, T. P. ;
Valiev, M. ;
van Dam, H. J. J. ;
Alexeev, Y. ;
Anchell, J. ;
Anisimov, V ;
Aquino, F. W. ;
Atta-Fynn, R. ;
Autschbach, J. ;
Bauman, N. P. ;
Becca, J. C. ;
Bernholdt, D. E. ;
Bhaskaran-Nair, K. ;
Bogatko, S. ;
Borowski, P. ;
Boschen, J. ;
Brabec, J. ;
Bruner, A. ;
Cauet, E. ;
Chen, Y. ;
Chuev, G. N. ;
Cramer, C. J. ;
Daily, J. ;
Deegan, M. J. O. ;
Dunning, T. H., Jr. ;
Dupuis, M. ;
Dyall, K. G. ;
Fann, G., I ;
Fischer, S. A. ;
Fonari, A. ;
Fruechtl, H. ;
Gagliardi, L. ;
Garza, J. ;
Gawande, N. ;
Ghosh, S. ;
Glaesemann, K. ;
Goetz, A. W. ;
Hammond, J. ;
Helms, V ;
Hermes, E. D. ;
Hirao, K. ;
Hirata, S. ;
Jacquelin, M. ;
Jensen, L. ;
Johnson, B. G. .
JOURNAL OF CHEMICAL PHYSICS, 2020, 152 (18)
[8]   HERFD-XAS and valence-to-core-XES: new tools to push the limits in research with hard X-rays? [J].
Bauer, Matthias .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2014, 16 (27) :13827-13837
[9]   Recent advances in automotive catalysis for NOx emission control by small-pore microporous materials [J].
Beale, A. M. ;
Gao, F. ;
Lezcano-Gonzalez, I. ;
Peden, C. H. F. ;
Szanyi, J. .
CHEMICAL SOCIETY REVIEWS, 2015, 44 (20) :7371-7405
[10]   Revisiting the nature of Cu sites in the activated Cu-SSZ-13 catalyst for SCR reaction [J].
Borfecchia, E. ;
Lomachenko, K. A. ;
Giordanino, F. ;
Falsig, H. ;
Beato, P. ;
Soldatov, A. V. ;
Bordiga, S. ;
Lamberti, C. .
CHEMICAL SCIENCE, 2015, 6 (01) :548-563