High-Density Carbon Nanotube Forest Growth on Copper Foil for Enhanced Thermal and Electrochemical Interfaces

被引:12
|
作者
Lettiere, Bethany. R. [1 ]
Chazot, Cecile A. C. [2 ]
Cui, Kehang [1 ,3 ]
Hart, A. John [1 ]
机构
[1] MIT, Dept Mech Engn, Cambridge, MA 02139 USA
[2] MIT, Dept Mat Sci & Engn, Cambridge, MA 02139 USA
[3] Shanghai Jiao Tong Univ, Sch Mat Sci & Engn, Shanghai 200240, Peoples R China
基金
美国国家科学基金会;
关键词
carbon nanotubes; chemical vapor deposition; nucleation; resistance; conductive; electrode; CATALYST; SUBSTRATE; FILM;
D O I
10.1021/acsanm.9b01595
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Vertically aligned carbon nanotubes (CNTs)-also called CNT forests-are attractive for use in battery electrodes, capacitive sensors, thermal interface materials, and many other applications. However, for practical use in most cases, the CNT forest must be dense and have mechanically robust, low-resistance electrical contact with the substrate. Fulfilling those requirements is often challenging, particularly when copper is used as the substrate material. Herein, we report production of tall (270 mu m maximum height) CNT forests on copper foils, by chemical vapor deposition by combining a supported catalyst structure with gaseous carbon preconditioning of the catalyst prior to film dewetting and annealing. Incorporation of tungsten in the catalyst support prevents diffusion of the iron catalyst into the underlying copper and promotes the formation of a high density population of catalyst particles. We find that the electrical resistance of the CNT forest scales with height, and correlated with X- ray scattering measurements of CNT density.
引用
收藏
页码:77 / 83
页数:13
相关论文
共 50 条
  • [1] Carbon nanotube thermal interfaces on gadolinium foil
    McCarthy, Patrick T.
    Marinero, Ernesto E.
    Fisher, Timothy S.
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2012, 55 (23-24) : 6716 - 6722
  • [2] Increased real contact in thermal interfaces: A carbon nanotube/foil material
    Cola, Baratunde A.
    Xu, Xianfan
    Fisher, Timothy S.
    APPLIED PHYSICS LETTERS, 2007, 90 (09)
  • [3] Growth of high-density carbon nanotube forests on conductive TiSiN supports
    Yang, Junwei
    Esconjauregui, Santiago
    Robertson, Alex W.
    Guo, Yuzheng
    Hallam, Toby
    Sugime, Hisashi
    Zhong, Guofang
    Duesberg, Georg S.
    Robertson, John
    APPLIED PHYSICS LETTERS, 2015, 106 (08)
  • [4] Carbon Nanotube Arrays for Enhanced Thermal Interfaces to Thermoelectric Modules
    Saviers, Kimberly R.
    Hodson, Stephen L.
    Fisher, Timothy S.
    Salvador, James R.
    Kasten, Linda S.
    JOURNAL OF THERMOPHYSICS AND HEAT TRANSFER, 2013, 27 (03) : 474 - 481
  • [5] CARBON NANOTUBE ARRAY THERMAL INTERFACES ENHANCED WITH PARAFFIN WAX
    Cola, Baratunde A.
    Hodson, Stephen L.
    Xu, Xianfan
    Fisher, Timothy S.
    HT2008: PROCEEDINGS OF THE ASME SUMMER HEAT TRANSFER CONFERENCE - 2008, VOL 2, 2009, : 765 - 770
  • [6] A stretched carbon nanotube with a high-density of topological defect
    Meng, Fanyan
    Wang, Guisheng
    Shi, Sanqiang
    Ogata, Shigenobu
    APPLICATION OF CHEMICAL ENGINEERING, PTS 1-3, 2011, 236-238 : 2225 - +
  • [7] Template synthesis of high-density carbon nanotube arrays
    Zhang, XY
    Zhang, LD
    Zheng, MJ
    Li, GH
    Zhao, LX
    JOURNAL OF CRYSTAL GROWTH, 2001, 223 (1-2) : 306 - 310
  • [8] Effects of growth temperature on carbon nanotube array thermal interfaces
    Cola, Baratunde A.
    Amama, Placidus B.
    Xu, Xianfan
    Fisher, Timothy S.
    JOURNAL OF HEAT TRANSFER-TRANSACTIONS OF THE ASME, 2008, 130 (11): : 1 - 4
  • [9] Enhanced thermal transport at covalently functionalized carbon nanotube array interfaces
    Sumanjeet Kaur
    Nachiket Raravikar
    Brett A. Helms
    Ravi Prasher
    D. Frank Ogletree
    Nature Communications, 5
  • [10] Carbon nanotube thermal interfaces enhanced with sprayed on nanoscale polymer coatings
    Taphouse, John H.
    Bougher, Thomas L.
    Singh, Virendra
    Abadi, Parisa Pour Shahid Saeed
    Graham, Samuel
    Cola, Baratunde A.
    NANOTECHNOLOGY, 2013, 24 (10)