Nanoscale terahertz scanning probe microscopy

被引:193
作者
Cocker, T. L. [1 ]
Jelic, V. [1 ]
Hillenbrand, R. [2 ,3 ,4 ]
Hegmann, F. A. [5 ]
机构
[1] Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA
[2] Basque Fdn Sci, IKERBASQUE, Bilbao, Spain
[3] Univ Basque Country, CIC nanoGUNE BRTA, Donostia San Sebastian, Spain
[4] Univ Basque Country, Dept Elect & Elect, Donostia San Sebastian, Spain
[5] Univ Alberta, Dept Phys, Edmonton, AB, Canada
基金
加拿大创新基金会; 加拿大自然科学与工程研究理事会;
关键词
NEAR-FIELD MICROSCOPY; SINGLE-MOLECULE; SPECTROSCOPY; DYNAMICS; EMISSION; TIME; PLASMONS; LIGHT; CONDUCTIVITY; RESOLUTION;
D O I
10.1038/s41566-021-00835-6
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Terahertz radiation has become an important diagnostic tool in the development of new technologies. However, the diffraction limit prevents terahertz radiation (lambda approximate to 0.01-3 mm) from being focused to the nanometre length scale of modern devices. In response to this challenge, terahertz scanning probe microscopy techniques based on coupling terahertz radiation to subwavelength probes such as sharp tips have been developed. These probes enhance and confine the light, improving the spatial resolution of terahertz experiments by up to six orders of magnitude. In this Review, we survey terahertz scanning probe microscopy techniques that achieve spatial resolution on the scale of micrometres to angstroms, with particular emphasis on their overarching approaches and underlying probing mechanisms. Finally, we forecast the next steps in the field. Recent progress in terahertz scanning probe microscopy is reviewed with an emphasis on techniques that access length scales below 100 nm relevant to material science. An outlook on the future of nanoscale terahertz scanning probe microscopy is also provided.
引用
收藏
页码:558 / 569
页数:12
相关论文
共 111 条
[1]   Variable Repetition Rate THz Source for Ultrafast Scanning Tunneling Microscopy [J].
Abdo, Mohamad ;
Sheng, Shaoxiang ;
Rolf-Pissarczyk, Steffen ;
Arnhold, Lukas ;
Burgess, Jacob A. J. ;
Isobe, Masahiko ;
Malavolti, Luigi ;
Loth, Sebastian .
ACS PHOTONICS, 2021, 8 (03) :702-708
[2]   Advanced terahertz electric near-field measurements at sub-wavelength diameter metallic apertures [J].
Adam, A. J. L. ;
Brok, J. M. ;
Seo, M. A. ;
Ahn, K. J. ;
Kim, D. S. ;
Kang, J. H. ;
Park, Q. H. ;
Nagel, M. ;
Planken, P. C. M. .
OPTICS EXPRESS, 2008, 16 (10) :7407-7417
[3]   Hyperspectral time-domain terahertz nanoimaging [J].
Aghamiri, Neda Alsadat ;
Huth, Florian ;
Huber, Andreas J. ;
Fali, Alireza ;
Hillenbrand, Rainer ;
Abate, Yohannes .
OPTICS EXPRESS, 2019, 27 (17) :24231-24242
[4]  
Alonso-González P, 2017, NAT NANOTECHNOL, V12, P31, DOI [10.1038/nnano.2016.185, 10.1038/NNANO.2016.185]
[5]   Structural analysis and mapping of individual protein complexes by infrared nanospectroscopy [J].
Amenabar, Iban ;
Poly, Simon ;
Nuansing, Wiwat ;
Hubrich, Elmar H. ;
Govyadinov, Alexander A. ;
Huth, Florian ;
Krutokhvostov, Roman ;
Zhang, Lianbing ;
Knez, Mato ;
Heberle, Joachim ;
Bittner, Alexander M. ;
Hillenbrand, Rainer .
NATURE COMMUNICATIONS, 2013, 4
[6]   Full vectorial mapping of the complex electric near-fields of THz resonators [J].
Bhattacharya, Arkabrata ;
Rivas, Jaime Gomez .
APL PHOTONICS, 2016, 1 (08)
[7]   Improving time and space resolution in electro-optic sampling for near-field terahertz imaging [J].
Blanchard, Francois ;
Tanaka, Koichiro .
OPTICS LETTERS, 2016, 41 (20) :4645-4648
[8]   Terahertz microscopy of charge carriers in semiconductors [J].
Buersgens, F ;
Kersting, R ;
Chen, HT .
APPLIED PHYSICS LETTERS, 2006, 88 (11)
[9]  
Chen C.J., 2008, Introduction to Scanning Tunneling Microscopy
[10]   Terahertz Nanoimaging and Nanospectroscopy of Chalcogenide Phase-Change Materials [J].
Chen, Chao ;
Chen, Shu ;
Lobo, Ricardo P. S. M. ;
Maciel-Escudero, Carlos ;
Lewin, Martin ;
Taubner, Thomas ;
Xiong, Wei ;
Xu, Ming ;
Zhang, Xinliang ;
Miao, Xiangshui ;
Li, Peining ;
Hillenbrand, Rainer .
ACS PHOTONICS, 2020, 7 (12) :5499-5506