The inverse of the star-discrepancy depends linearly on the dimension

被引:89
作者
Heinrich, S
Novak, E
Wasilkowski, GW
Wozniakowski, H
机构
[1] Univ Kaiserslautern, FB Informat, D-67653 Kaiserslautern, Germany
[2] Univ Jena, Math Inst, D-07740 Jena, Germany
[3] Univ Kentucky, Dept Comp Sci, Lexington, KY 40506 USA
[4] Columbia Univ, Dept Comp Sci, New York, NY 10027 USA
[5] Univ Warsaw, Inst Appl Math, PL-02097 Warsaw, Poland
关键词
D O I
10.4064/aa96-3-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
[No abstract available]
引用
收藏
页码:279 / 302
页数:24
相关论文
共 22 条
[1]  
[Anonymous], 1999, GEOMETRIC DISCREPANC
[2]  
[Anonymous], 1997, LECT NOTES MATH
[3]  
[Anonymous], 1984, LECT NOTES MATH
[4]   ON THE DISCREPANCY OF CONVEX PLANE SETS [J].
BECK, J .
MONATSHEFTE FUR MATHEMATIK, 1988, 105 (02) :91-106
[6]   CENTRAL LIMIT-THEOREMS FOR EMPIRICAL MEASURES [J].
DUDLEY, RM .
ANNALS OF PROBABILITY, 1978, 6 (06) :899-929
[7]   SPHERE PACKING NUMBERS FOR SUBSETS OF THE BOOLEAN N-CUBE WITH BOUNDED VAPNIK-CHERVONENKIS DIMENSION [J].
HAUSSLER, D .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 1995, 69 (02) :217-232
[8]  
Kiefer J., 1961, PACIFIC J MATH, V11, P649, DOI DOI 10.2140/PJM.1961.11.649
[9]  
LARCHER G, 1998, DAGSTUHL SEM
[10]  
NIEDERREITER H, 1992, RANDOM NUMBER GEN QU