Jauch-Piron states on quantum logics

被引:0
作者
Hroch, Michal [1 ]
Ptak, Pavel [1 ]
机构
[1] Czech Tech Univ, Fac Elect Engn, Dept Math, Tech 2, Prague 16627, Czech Republic
关键词
Boolean algebra; orthomodular lattice; quantum logic; Jauch-Piron states; extensions of states;
D O I
10.1142/S0219498820500176
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We show in this note that if B is a Boolean subalgebra of the lattice quantum logic L, then each state on B can be extended over L as a Jauch-Piron state provided L is Jauch-Piron unital with respect to B (i.e. for each nonzero b is an element of B, there is a Jauch-Piron state s on L such that s(b) = 1). We then discuss this result for the case of L being the Hilbert space logic L(H) and L being a set-representable logic.
引用
收藏
页数:5
相关论文
共 16 条
[1]   QUANTUM-LOGICS WITH JAUCH-PIRON STATES [J].
BUNCE, LJ ;
NAVARA, M ;
PTAK, P ;
WRIGHT, JDM .
QUARTERLY JOURNAL OF MATHEMATICS, 1985, 36 (143) :261-271
[2]  
Godowski R.:., 1981, Demonstratio Math, V14, P725, DOI 10.1515/dema-1981-0317
[3]  
Greechie R.J, 1971, J. Comb. Theory Ser. A, V10, P119, DOI [DOI 10.1016/0097-3165(71)90015-X, 10.1016/0097-3165(71)90015-x]
[4]  
Gudder S. P., 1979, Stochastic Methods in Quantum Mechanics
[5]  
Hamhalter J., 2003, Quantum Measure Theory
[6]  
Kalmbach G., 1983, Orthomodular lattices
[7]   Characterization of Boolean Algebras in Terms of Certain States of Jauch-Piron Type [J].
Matousek, Milan ;
Ptak, Pavel .
INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2015, 54 (12) :4476-4481
[8]   VARIETIES OF ORTHOMODULAR LATTICES RELATED TO STATES [J].
MAYET, R .
ALGEBRA UNIVERSALIS, 1985, 20 (03) :368-396
[9]   JAUCH-PIRON STATES ON CONCRETE QUANTUM-LOGICS [J].
MULLER, V .
INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 1993, 32 (03) :433-442
[10]   ENLARGEMENTS OF QUANTUM-LOGICS [J].
NAVARA, M ;
PTAK, P ;
ROGALEWICZ, V .
PACIFIC JOURNAL OF MATHEMATICS, 1988, 135 (02) :361-369