Belief function classification with conflict management: application on forest image

被引:1
作者
Samet, Ahmed [1 ]
Lefevre, Eric [2 ]
Ben Yahia, Sadok [3 ]
机构
[1] Univ Lille Nord France, EA 4491, ULCO, LISIC, F-62228 Calais, France
[2] Univ Lille Nord France, UArtois, LGI2A, EA 3926, F-62400 Bethune, France
[3] Univ Tunis El Manar, LIPAH, Tunis, Tunisia
来源
10TH INTERNATIONAL CONFERENCE ON SIGNAL-IMAGE TECHNOLOGY AND INTERNET-BASED SYSTEMS SITIS 2014 | 2014年
关键词
belief function theory; information fusion; classification; conflict management; COMBINATION; RULE;
D O I
10.1109/SITIS.2014.34
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Treating imprecise and uncertain data requires an adequate formalism allowing a fit modelization. Several formalisms can be identified such as Bayesian theory, fuzzy set theory and belief function theory. The belief function theory provides an adequate formalism to manipulate those imperfect data. It also allows source fusion thanks to the combination operators that it integrates. The fusion process generates an empty set mass denoted conflict that illustrates the contradiction rate between considered sources. In this work, we tackle the classification of a forest high-resolution remote-sensing image problem. In order to classify this image, we handled imperfect information with the belief function theory. We propose a method for classification based on belief function theory and source fusion. The introduced Redistributing Conflict Classification Approach (RCCA) analyzes the conflict resulting from the fusion and redistributes it to the most pertinent classes. An experimental comparison to well known literature classifiers is provided.
引用
收藏
页码:14 / 20
页数:7
相关论文
共 21 条
[1]  
Dempster A., 1967, AMS38
[2]   A K-NEAREST NEIGHBOR CLASSIFICATION RULE-BASED ON DEMPSTER-SHAFER THEORY [J].
DENOEUX, T .
IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS, 1995, 25 (05) :804-813
[3]   A neural network classifier based on Dempster-Shafer theory [J].
Denoeux, T .
IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART A-SYSTEMS AND HUMANS, 2000, 30 (02) :131-150
[4]  
Dhiaf Z. B., 2007, P INT C IM SIGN PROC, P17
[5]   Belief decision trees: theoretical foundations [J].
Elouedi, Z ;
Mellouli, K ;
Smets, P .
INTERNATIONAL JOURNAL OF APPROXIMATE REASONING, 2001, 28 (2-3) :91-124
[6]  
Erikson M., 2003, P 13 SCAND C IM AN S, P283
[7]  
Hall M., 2009, SIGKDD Explorations, V11, P10, DOI DOI 10.1145/1656274.1656278
[8]  
Lefevre E., 2003, Information Fusion, V4, P63, DOI 10.1016/S1566-2535(02)00103-3
[9]  
Lefevre E., 2002, Information Fusion, V3, P149, DOI 10.1016/S1566-2535(02)00053-2
[10]  
Lefevre Eric, 2011, Symbolic and Quantitative Approaches to Reasoning with Uncertainty. Proceedings 11th European Conference, ECSQARU 2011, P314, DOI 10.1007/978-3-642-22152-1_27