Li-Yorke sensitivity

被引:190
作者
Akin, E
Kolyada, S
机构
[1] CUNY City Coll, Dept Math, New York, NY 10031 USA
[2] NAS Ukraine, Inst Math, UA-01601 Kiev, Ukraine
关键词
D O I
10.1088/0951-7715/16/4/313
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We introduce and study a concept which links the Li-Yorke versions of chaos with the notion of sensitivity to initial conditions. We say that a dynamical system (X, T) is Li-Yorke sensitive if there exists a positive epsilon such that every x is an element of X is a limit of points y is an element of X such that the pair (x, y) is proximal but not epsilon-asymptotic, i.e. for infinitely many positive integers i the distance rho (T-i(x), T-i(y)) is greater than epsilon but for any positive delta this distance is less than delta for infinitely many i.
引用
收藏
页码:1421 / 1433
页数:13
相关论文
共 16 条
[1]  
Akin E, 1996, OHIO ST U M, V5, P25
[2]  
Akin E., 1993, GRADUATE STUDIES MAT, V1
[3]  
Akin E., 1997, The University Series in Mathematics
[4]  
Auslander J., 1988, N HOLLAND MATH STUDI, V153
[5]  
Auslander J., 1980, Tohoku Math. J., V32, P177, DOI DOI 10.2748/TMJ/1178229634
[7]   Topological complexity [J].
Blanchard, F ;
Host, B ;
Maass, A .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2000, 20 :641-662
[8]  
Blanchard F, 2002, J REINE ANGEW MATH, V547, P51
[9]  
Downarowicz T., 2002, C MATH, V93, P137
[10]  
Ellis R., 1960, T AM MATH SOC, V94, P272, DOI [10.1090/S0002-9947-1960-0123636-3, DOI 10.1090/S0002-9947-1960-0123636-3]