Hybrid projective combination-combination synchronization in non-identical hyperchaotic systems using adaptive control

被引:7
作者
Khan, Ayub [1 ]
Chaudhary, Harindri [1 ]
机构
[1] Jamia Millia Islamia, Dept Math, New Delhi, India
关键词
34K23; 34K35; 37B25; 37N35; CHAOTIC SYSTEMS; ANTI-SYNCHRONIZATION; NEURAL-NETWORKS; CHUAS CIRCUIT; DYNAMICS; STATE;
D O I
10.1007/s40065-020-00279-w
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we investigate a hybrid projective combination-combination synchronization scheme among four non-identical hyperchaotic systems via adaptive control method. Based on Lyapunov stability theory, the considered approach identifies the unknown parameters and determines the asymptotic stability globally. It is observed that various synchronization techniques, for instance, chaos control problem, combination synchronization, projective synchronization, etc. turn into particular cases of combination-combination synchronization. The proposed scheme is applicable to secure communication and information processing. Finally, numerical simulations are performed to demonstrate the effectivity and correctness of the considered technique by using MATLAB.
引用
收藏
页码:597 / 611
页数:15
相关论文
共 50 条
[21]   Modified projective synchronization of different chaotic systems using adaptive control [J].
Hamri, Nasr-eddine ;
Ouahabi, Rabiaa .
COMPUTATIONAL & APPLIED MATHEMATICS, 2017, 36 (03) :1315-1332
[22]   Adaptive fixed-time robust control for function projective synchronization of hyperchaotic economic systems with external perturbations [J].
Bekiros, Stelios ;
Yao, Qijia ;
Mou, Jun ;
Alkhateeb, Abdulhameed F. ;
Jahanshahi, Hadi .
CHAOS SOLITONS & FRACTALS, 2023, 172
[23]   Sliding Mode Disturbance Observer Control Based on Adaptive Hybrid Projective Compound Combination Synchronization in Fractional-Order Chaotic Systems [J].
Khan, Ayub ;
Nigar, Uzma .
JOURNAL OF CONTROL AUTOMATION AND ELECTRICAL SYSTEMS, 2020, 31 (04) :885-899
[24]   Adaptive modified function projective synchronization of hyperchaotic systems with unknown parameters [J].
Zheng, Song ;
Dong, Gaogao ;
Bi, Qinsheng .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2010, 15 (11) :3547-3556
[25]   Adaptive anti-synchronization of two identical and different hyperchaotic systems with uncertain parameters [J].
Al-Sawalha, M. Mossa ;
Noorani, M. S. M. .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2010, 15 (04) :1036-1047
[26]   Adaptive Full State Hybrid Projective Synchronization of two Different Hyperchaotic Systems with Fully Uncertain Parameters [J].
He Bingli ;
Li Junmin .
2011 CHINESE CONTROL AND DECISION CONFERENCE, VOLS 1-6, 2011, :1380-1384
[27]   Anti-synchronization between identical and non-identical fractional-order chaotic systems using active control method [J].
M. Srivastava ;
S. P. Ansari ;
S. K. Agrawal ;
S. Das ;
A. Y. T. Leung .
Nonlinear Dynamics, 2014, 76 :905-914
[28]   Function projective Mittag-Leffler synchronization of non-identical fractional-order neural networks [J].
Baluni, Sapna ;
Yadav, Vijay K. ;
Das, Subir ;
Cao, Jinde .
PHYSICA SCRIPTA, 2024, 99 (02)
[29]   Estimation and Identifiability of Parameters for Generalized Lotka-Volterra Biological Systems Using Adaptive Controlled Combination Difference Anti-Synchronization [J].
Khan, Taqseer ;
Chaudhary, Harindri .
DIFFERENTIAL EQUATIONS AND DYNAMICAL SYSTEMS, 2020, 28 (03) :515-526
[30]   Modeling and Inverse Complex Generalized Synchronization and Parameter Identification of Non-Identical Nonlinear Complex Systems Using Adaptive Integral Sliding Mode Control [J].
Afzal, Humaira ;
Mufti, Muhammad Rafiq ;
Din, Sami Ud ;
Butt, Qarab Raza ;
Qureshi, Muhammad Imran ;
Khan, Dost Muhammad ;
Aslam, Waqar .
IEEE ACCESS, 2020, 8 :38950-38969