Simulation of the inhibition of hydrogen-air flame propagation

被引:10
|
作者
Azatyan, V. V. [1 ]
Andrianova, Z. S. [2 ]
Ivanova, A. N. [2 ]
机构
[1] Russian Acad Sci, Inst Struct Macrokinet & Mat Res Problems, Chernogolovka 142432, Moscow Oblast, Russia
[2] Russian Acad Sci, Inst Problems Chem Phys, Chernogolovka 142432, Moscow Oblast, Russia
基金
俄罗斯基础研究基金会;
关键词
Flame Propagation; Chain Termination; Flame Speed; Incident Shock Wave; Combus Tion;
D O I
10.1134/S0023158410040014
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The results of simulation and experimental data presented here demonstrate that the competition between chain branching and chain termination is the key factor in hydrogen-air flame propagation, including the temperature regime of the process and the formation of concentration limits. Self-heating becomes significant in developed combustion. It enhances the chain avalanche and ensures the temperature necessary for layer-by-layer chain ignition. By varying the ratio between the chain branching and termination rates by means of an inhibitor makes it possible to control the flame propagation process.
引用
收藏
页码:461 / 468
页数:8
相关论文
共 50 条
  • [21] TimeScale Analysis, Numerical Simulation and Validation of Flame Acceleration, and DDT in Hydrogen-Air Mixtures
    Karanam, Aditya
    Ganju, Sunil
    Chattopadhyay, Jayanta
    COMBUSTION SCIENCE AND TECHNOLOGY, 2021, 193 (13) : 2217 - 2240
  • [22] Flame stability studies in a hydrogen-air premixed flame annular microcombustor
    Jejurkar, Swarup Y.
    Mishra, D. P.
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2011, 36 (12) : 7326 - 7338
  • [23] Flame propagation characteristics of non-uniform premixed hydrogen-air mixtures explosion in a pipeline
    Qu, Jiao
    Zhao, Huali
    Zhao, Lingchen
    Luo, Zhen-Min
    Wang, Tao
    Deng, Jun
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2024, 88 : 462 - 476
  • [24] A Thickened flame model extension for the simulation of lean hydrogen-air explosions in confined environments
    Hok, Jean-Jacques
    Dounia, Omar
    Vermorel, Olivier
    COMBUSTION AND FLAME, 2025, 275
  • [25] Lean hydrogen-air premixed flame with heat loss
    Gavrikov, Andrey I.
    Golub, Victor V.
    Mikushkin, Anton Yu
    Petukhov, Vyatcheslav A.
    Volodin, Vladislav V.
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2019, 44 (36) : 20462 - 20469
  • [26] Flame wrinkling factor in quiescent hydrogen-air mixtures
    Taivassalo, Veikko
    NUCLEAR ENGINEERING AND DESIGN, 2024, 421
  • [27] Experimental study of premixed hydrogen-air flame quenching in a channel with the perforated plate
    Wan, Yang
    Wang, Changjian
    Li, Quan
    Luo, Xinjiao
    FUEL, 2020, 263 (263)
  • [28] Schlieren visualization of the interaction of jet in crossflow and deflagrated flame in hydrogen-air mixture
    Xiao, Qiuping
    Cheng, Jun
    Zhang, Bo
    Zhou, Jian
    Chen, Wanghua
    FUEL, 2021, 292
  • [29] Ignition and flame propagation in hydrogen-air layers from a geological nuclear waste repository: A preliminary study
    Ryu, Je Ir
    Woo, Seung Min
    Lee, Manseok
    Yoon, Hyun Chul
    NUCLEAR ENGINEERING AND TECHNOLOGY, 2022, 54 (01) : 130 - 137
  • [30] Simulation of turbulent explosion of hydrogen-air mixtures
    Ahmed, I.
    Swaminathan, N.
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2014, 39 (17) : 9562 - 9572