Controllability results for the two-dimensional heat equation with mixed boundary conditions using Carleman inequalities: a linear and a semilinear case

被引:2
作者
Ziane, Tarik Ali [1 ]
Ouzzane, Hadjer [1 ]
Zair, Ouahiba [1 ]
机构
[1] USTHB, Lab AMNEDP, Fac Math, Algiers, Algeria
关键词
Mixed boundary conditions; controllability; singularities; Carleman inequalities; semilinear parabolic equations; NULL CONTROLLABILITY; APPROXIMATE CONTROLLABILITY; TRAJECTORIES;
D O I
10.1080/00036811.2017.1371298
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we prove controllability results for a two-dimensional semilinear heat equation with mixed boundary conditions. It is well-known that mixed boundary conditions can present a singular behaviour of the solution. First, we will prove global Carleman estimates then we will use these inequalities to obtain controllability results.
引用
收藏
页码:2412 / 2430
页数:19
相关论文
共 24 条
[1]   PARABOLIC EVOLUTION-EQUATIONS AND NONLINEAR BOUNDARY-CONDITIONS [J].
AMANN, H .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1988, 72 (02) :201-269
[2]   Null controllability of nonlinear convective heat equations [J].
Anita, S ;
Barbu, V .
ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2000, 5 :157-173
[3]  
[Anonymous], 2002, Sci. Math. Jpn.
[4]   Parabolic problems with nonlinear boundary conditions and critical nonlinearities [J].
Arrieta, JM ;
Carvalho, AN ;
Rodríguez-Bernal, A .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1999, 156 (02) :376-406
[5]   Carleman inequalities for the heat equation in singular domains [J].
Belghazi, Abdelhakim ;
Smadhi, Ferroudja ;
Zaidi, Nawel ;
Zair, Ouahiba .
COMPTES RENDUS MATHEMATIQUE, 2010, 348 (5-6) :277-282
[6]   A stability estimate for ill-posed elliptic cauchy problems in a domain with comers [J].
Bourgeois, Laurent .
COMPTES RENDUS MATHEMATIQUE, 2007, 345 (07) :385-390
[7]   CARLEMAN ESTIMATES FOR THE ZAREMBA BOUNDARY CONDITION AND STABILIZATION OF WAVES [J].
Cornilleau, Pierre ;
Robbiano, Luc .
AMERICAN JOURNAL OF MATHEMATICS, 2014, 136 (02) :393-444
[8]   On the controllability of the heat equation with nonlinear boundary Fourier conditions [J].
Doubova, A ;
Fernández-Cara, E ;
González-Burgos, M .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2004, 196 (02) :385-417
[9]   Exact controllability to trajectories for semilinear heat equations with discontinuous diffusion coefficients [J].
Doubova, A ;
Osses, A ;
Puel, JP .
ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2002, 8 :621-661
[10]   APPROXIMATE CONTROLLABILITY OF THE SEMILINEAR HEAT-EQUATION [J].
FABRE, C ;
PUEL, JP ;
ZUAZUA, E .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1995, 125 :31-61