Solutions of certain fractional kinetic equations and a fractional diffusion equation

被引:18
|
作者
Saxena, R. K. [1 ]
Mathai, A. M. [2 ,3 ]
Haubold, H. J. [3 ,4 ]
机构
[1] Jai Narain Vyas Univ, Dept Math & Stat, Jodhpur 342004, Rajasthan, India
[2] McGill Univ, Dept Math & Stat, Montreal, PQ H3A 2K6, Canada
[3] Ctr Math Sci, Pala 686574, Kerala, India
[4] UN, Off Outer Space Affairs, A-1400 Vienna, Austria
关键词
D O I
10.1063/1.3496829
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In view of the usefulness and importance of kinetic equations in certain physical problems, the authors derive an explicit solution of a fractional kinetic equation of general character that unifies and extends earlier results. Further, an alternative shorter method based on a result developed by the authors is given to derive the solution of a fractional diffusion equation. Solutions are represented in terms of H-functions and generalized Mittag-Leffler functions. (C) 2010 American Institute of Physics. [doi: 10.1063/1.3496829]
引用
收藏
页数:8
相关论文
共 50 条
  • [21] The dependence on fractional orders of mild solutions to the fractional diffusion equation with memory
    Akdemir, Ahmet Ocak
    Binh, Ho Duy
    O'Regan, Donal
    Nguyen, Anh Tuan
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2023, 46 (01) : 1076 - 1095
  • [22] Continuity of solutions to a nonlinear fractional diffusion equation
    Lorenzo Brasco
    Erik Lindgren
    Martin Strömqvist
    Journal of Evolution Equations, 2021, 21 : 4319 - 4381
  • [23] Solutions for a fractional diffusion equation with noninteger dimensions
    Lucena, L. S.
    da Silva, L. R.
    Tateishi, A. A.
    Lenzi, M. K.
    Ribeiro, H. V.
    Lenzi, E. K.
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2012, 13 (04) : 1955 - 1960
  • [24] On the Solutions of the Time-Fractional Diffusion Equation
    Takaci, Arpad
    Takaci, Djurdjica
    Strboja, Ana
    NUMERICAL ANALYSIS AND APPLIED MATHEMATICS, 2008, 1048 : 538 - 540
  • [25] Continuity of solutions to a nonlinear fractional diffusion equation
    Brasco, Lorenzo
    Lindgren, Erik
    Stromqvist, Martin
    JOURNAL OF EVOLUTION EQUATIONS, 2021, 21 (04) : 4319 - 4381
  • [26] Solutions for a fractional diffusion equation in heterogeneous media
    Lenzi, E. K.
    da Silva, L. R.
    Sandev, T.
    Zola, R. S.
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2019,
  • [27] Classical solutions for a logarithmic fractional diffusion equation
    de Pablo, Arturo
    Quiros, Fernando
    Rodriguez, Ana
    Luis Vazquez, Juan
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2014, 101 (06): : 901 - 924
  • [28] Solutions for a generalized fractional anomalous diffusion equation
    Lv, Long-Jin
    Xiao, Jian-Bin
    Zhang, Lin
    Gao, Lei
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2009, 225 (01) : 301 - 308
  • [29] ON THE SOLUTIONS OF FRACTIONAL REACTION-DIFFUSION EQUATIONS
    Singh, Jagdev
    Kumar, Devendra
    Rathore, Sushila
    MATEMATICHE, 2013, 68 (01): : 23 - 32
  • [30] REGULARITY OF SOLUTIONS TO TIME FRACTIONAL DIFFUSION EQUATIONS
    Li, Binjie
    Xie, Xiaoping
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2019, 24 (07): : 3195 - 3210