FOCUS: A full-orbit CUDA solver for particle simulations in magnetized plasmas

被引:9
作者
Clauser, C. F. [1 ,2 ,3 ,4 ]
Farengo, R. [2 ,3 ,4 ]
Ferrari, H. E. [1 ,2 ,3 ,4 ]
机构
[1] Consejo Nacl Invest Cient & Tecn, Consejo Nacl Invest Cient & Tecn, Buenos Aires, DF, Argentina
[2] Comis Nacl Energia Atom, Ctr Atom Bariloche, Av Bustillo 9500, RA-8400 San Carlos De Bariloche, Rio Negro, Argentina
[3] Comis Nacl Energia Atom, Inst Balseiro, Av Bustillo 9500, RA-8400 San Carlos De Bariloche, Rio Negro, Argentina
[4] Univ Nacl Cuyo, Av Bustillo 9500, RA-8400 San Carlos De Bariloche, Rio Negro, Argentina
关键词
GPU code; Particle simulation; Magnetized plasma; Nuclear fusion; ENERGY-LOSS; EQUATION;
D O I
10.1016/j.cpc.2018.07.018
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
A Full-Orbit CUDA Solver for particle simulations in plasmas, FOCUS, has been developed. The code follows exact particle trajectories by solving Newton's equations with the Lorentz force. The code can use fields calculated analytically or numerically and it is also possible to use the information provided by equilibrium reconstruction and transport codes. FOCUS has an elastic collisions module which covers the whole particle energy range in magnetic fusion devices. Moreover, an atomic collision module was also included to simulate the interaction of the test particles with neutral or partially ionized species. Regarding performance, the main feature is that the code runs on GPUs, allowing the simulation of a large number of particles using moderate computational resources. Different versions of the code have been used in several papers. Here we present a complete description of its capabilities, the basis physics included and detailed information about the numerical algorithms employed. Finally, some examples are presented. (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:126 / 136
页数:11
相关论文
共 45 条
[1]  
Abramowitz M., 1695, HDB MATH FUNCTIONS F
[2]  
Akers R. J., 2012, 39 EPS C 16 INT C PL
[3]  
Akers R. J., 2016, 26 IAEA FUS EN C KYO
[4]   Low-dissipation and low-dispersion fourth-order Runge-Kutta algorithm [J].
Berland, Julien ;
Bogey, Christophe ;
Bailly, Christophe .
COMPUTERS & FLUIDS, 2006, 35 (10) :1459-1463
[5]   MONTE-CARLO EVALUATION OF TRANSPORT-COEFFICIENTS [J].
BOOZER, AH ;
KUOPETRAVIC, G .
PHYSICS OF FLUIDS, 1981, 24 (05) :851-859
[6]  
Boris J. P., 1970, P C NUM SIM PLASM 4
[7]   IMPROVED FORMULAS FOR FUSION CROSS-SECTIONS AND THERMAL REACTIVITIES [J].
BOSCH, HS ;
HALE, GM .
NUCLEAR FUSION, 1992, 32 (04) :611-631
[8]  
Chen T. S., 1988, TECH REP
[9]   Stopping power of dense plasmas: The collisional method and limitations of the dielectric formalism [J].
Clauser, C. F. ;
Arista, N. R. .
PHYSICAL REVIEW E, 2018, 97 (02)
[10]   The effect of inelastic collisions on the transport of alpha particles in ITER-like plasmas [J].
Clauser, C. F. ;
Farengo, R. .
NUCLEAR FUSION, 2017, 57 (04)