Leaf leachates have the potential to influence soil nitrification via changes in ammonia-oxidizing archaea and bacteria populations

被引:14
作者
Chen, Wei-Bin [1 ]
Chen, Bao-Ming [1 ]
Liao, Hui-Xuan [1 ]
Su, Jin-Quan [1 ]
Peng, Shao-Lin [1 ]
机构
[1] Sun Yat Sen Univ, Sch Life Sci, State Key Lab Biocontrol, Guangdong Prov Key Lab Plant Resources, Guangzhou 510275, Peoples R China
基金
中国国家自然科学基金;
关键词
allelopathy; ammonia-oxidizing; invasive plants; nitrification; secondary metabolite; SECONDARY METABOLITES; RIBOSOMAL-RNA; INHIBITION; DIVERSITY; AMOA; FERTILIZATION; PHYLOGENY; SEQUENCES; COMMUNITY; INVASION;
D O I
10.1111/ejss.12844
中图分类号
S15 [土壤学];
学科分类号
0903 ; 090301 ;
摘要
Soil nitrogen (N) transformation is mainly controlled by microorganisms. Different plant species have specific effects on soil ammonia-oxidizing archaea (AOA) and bacteria (AOB). Furthermore, plant secondary metabolites have dramatic influences on soil N transformation and soil ammonia-oxidizers. However, no study has directly linked the changes in soil AOA and AOB communities to N transformation due to different plant species' leaf leachates, including comparing invasive versus native plants. We selected three invasive species, Wedelia trilobata, Ipomoea cairica and Mikania micrantha, and two native species, Wedelia chinensis and Merremia hederacea, and incubated soil with high and low concentrations of leaf leachates from the five species. Soil N transformation and ammonia oxidizer communities (based on quantitative PCR and 16S rRNA high-throughput sequencing) were determined. Leaf leachates significantly affected soil N transformation and soil AOA and AOB abundance, and the effects were dependent on the plant species and leachate concentration. The leachate of W. chinensis increased soil net nitrification rates (NNR), whereas that of M. micrantha increased soil nitrate (NO3-) and NNR. The leachate of M. micrantha increased AOB amoA genes, whereas that of M. hederacea decreased AOA amoA genes. At the higher concentration, all leachates showed inhibitory effects on the relative abundance of all AOA taxonomic groups. Phenolics, flavonoids and organic carbon in leaf leachates had a negative correlation with soil NO3-, NNR and the amoA genes of AOA and AOB, whereas NH4+ and NO3- in leachates showed a positive correlation. Among the five species, the invasive species M. micrantha had the strongest positive effect on soil N transformation and AOB abundance. The altered soil ammonia oxidizer communities and modified N process rates induced by leaf leachates provide an explanatory mechanism for the differential effects of plant species on N cycling. Highlights Link changes in soil AOA and AOB to N cycling due to leaf leachates. Specific plants can dramatically alter soil ammonia-oxidizer presence and abundance. Effects of invasive plants on soil N and AOB are mainly driven by M. micrantha. High concentrations of plant leachates reduced the relative abundance of AOA groups.
引用
收藏
页码:119 / 131
页数:13
相关论文
共 50 条
  • [31] Green manuring inhibits nitrification in a typical paddy soil by changing the contributions of ammonia-oxidizing archaea and bacteria
    Gao, Songjuan
    Zhou, Guopeng
    Rees, Robert M.
    Cao, Weidong
    APPLIED SOIL ECOLOGY, 2020, 156
  • [32] Soil particle surface electrochemical property effects on abundance of ammonia-oxidizing bacteria and ammonia-oxidizing archaea, NH4+ activity, and net nitrification in an acid soil
    Jiang, X.
    Ma, Y.
    Yuan, J.
    Wright, A. L.
    Li, H.
    SOIL BIOLOGY & BIOCHEMISTRY, 2011, 43 (11) : 2215 - 2221
  • [33] Abundance of Ammonia-Oxidizing Archaea and Bacteria along an Estuarine Salinity Gradient in Relation to Potential Nitrification Rates
    Bernhard, Anne E.
    Landry, Zachary C.
    Blevins, Alison
    de la Torre, Jose R.
    Giblin, Anne E.
    Stahl, David A.
    APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2010, 76 (04) : 1285 - 1289
  • [34] Substrate and nutrient limitation of ammonia-oxidizing bacteria and archaea in temperate forest soil
    Norman, J. S.
    Barrett, J. E.
    SOIL BIOLOGY & BIOCHEMISTRY, 2014, 69 : 141 - 146
  • [35] Ammonia-oxidizing bacteria and archaea grow under contrasting soil nitrogen conditions
    Di, Hong J.
    Cameron, Keith C.
    Shen, Ju-Pei
    Winefield, Chris S.
    O'Callaghan, Maureen
    Bowatte, Saman
    He, Ji-Zheng
    FEMS MICROBIOLOGY ECOLOGY, 2010, 72 (03) : 386 - 394
  • [36] Contribution of ammonia-oxidizing archaea and bacteria to nitrification under different biogeochemical factors in acidic soils
    Ye, Huijun
    Tang, Changyuan
    Cao, Yingjie
    Li, Xing
    Huang, Pinyi
    ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, 2022, 29 (12) : 17209 - 17222
  • [37] Abundance and community structure of ammonia-oxidizing archaea and bacteria in an acid paddy soil
    Xin Chen
    Li-Mei Zhang
    Ju-Pei Shen
    Wen-Xue Wei
    Ji-Zheng He
    Biology and Fertility of Soils, 2011, 47 : 323 - 331
  • [38] Ammonia-oxidizing bacteria are the primary N2O producers in an ammonia-oxidizing archaea dominated alkaline agricultural soil
    Meinhardt, Kelley A.
    Stopnisek, Nejc
    Pannu, Manmeet W.
    Strand, Stuart E.
    Fransen, Steven C.
    Casciotti, Karen L.
    Stahl, David A.
    ENVIRONMENTAL MICROBIOLOGY, 2018, 20 (06) : 2195 - 2206
  • [39] High pH-enhanced soil nitrification was associated with ammonia-oxidizing bacteria rather than archaea in acidic soils
    Che, Jing
    Zhao, Xue Qiang
    Zhou, Xue
    Jia, Zhong Jun
    Shen, Ren Fang
    APPLIED SOIL ECOLOGY, 2015, 85 : 21 - 29
  • [40] Impact of soil parent material and plantation age on ammonia-oxidizing archaea and bacteria in citrus orchards
    Gan, Cai
    Zhao, Wenjing
    Hu, Ronggui
    Jiang, Yanbin
    Shaaban, Muhammad
    Xiang, Rongbiao
    Liu, Shurong
    APPLIED SOIL ECOLOGY, 2024, 201